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This research develops a harmonic potential field based path planner and controller.  

The first component of the dissertation compares several analytical and numerical 

potential field generation methods.  To overcome limitations present in the existing 

methods, two new methods are developed to meet the specific requirements of this 

research (generic shape obstacles and an explicit stream function).  In particular, an 

analytic method to combine circles and create generic shaped obstacles is presented.  

Additionally, a numeric technique to directly calculate a potential field stream function is 

developed. 
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The second part of this research extends the traditional potential field controller to 

track a desired streamline as well as the potential field gradient.  In addition to tracking a 

streamline, the reference path is also modified to maximize safety as the vehicle is 

driving.  In particular, a separate harmonic potential field is created for the desired speed.  

This speed is low near obstacles and high in the open field.  The lateral acceleration of 

the vehicle is also limited by reducing the steer angle and desired speed whenever an 

acceleration threshold is crossed.  Finally, to create a buffer between the vehicle and 

obstacles, whenever the vehicle is close to an obstacle the desired streamline is shifted 

away from the obstacles.  Together these three real-time modifications to the controller 

keep the vehicle safely away from obstacles and within its handling limitations. 
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1 INTRODUCTION 

Potential fields are a method of path planning and control for directing a robot 

through an obstacle field to a goal location.  To accomplish this, an artificial potential 

field is created over the range of the world map.  Based on this potential field, a 

controller is developed for the robot to reach the goal, typically by following the gradient 

of the potential field.  Potential fields offer an alternative to the traditionally independent 

operations of path planning and vehicle control.  Typical path planners calculate a 

collision free route from a vehicle’s current location to a goal.  This route is represented 

(either directly or after a translation step) as a reference trajectory, e.g. a series of 

waypoints, lines and arcs, or clothoids.  The reference trajectory is passed to the vehicle 

controller, which drives the vehicle onto the path.  Usually, information other than the 

reference trajectory is not passed to the controller.  An example of this method of path 

planning and control was represented in Auburn University’s entries in the DARPA 

Grand Challenge series [Daily 2006].  Potential field techniques differ from traditional 

path planning and control methods in that a potential field over the entire world map is 

created and available to the controller.  The potential field is directly used to compute the 

control effort.  Because the potential field is global, the controller has more information 

about the vehicle’s environment than simply a reference trajectory. 
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Harmonic potential fields improve on the traditional potential field concept.  In 

particular, early potential fields suffered from local minima into which the controlled 

robot could become stuck.  Harmonic potential fields are also used by fluid dynamicists 

to model ideal fluid flow.  Several methods have been developed to study flow around 

obstacle fields.  These same methods can be adapted into paths for a vehicle to follow.  

This research utilizes the stream function component of the potential field to control the 

vehicle.  Contours of the stream function are streamlines, which are the paths the fluid or 

vehicle should follow.  Tracking the streamlines is the basis for the vehicle navigation 

controller developed in this work. 

This dissertation is divided into six chapters.  The Introduction presents prior and 

ongoing research in the potential field control area as well as the specific contributions of 

this research.  Chapter 2 discusses background information about potential field theory, 

specifically with respect to the harmonic potential fields used in this research as well as 

the vehicle model used in the simulation studies.  Chapter 3 examines different methods 

of computing the potential fields and develops new potential field generation techniques.  

Chapter 4 develops the streamline controller and discusses controllability issues related to 

the vehicle model.  Chapter 5 modifies the streamline controller to improve safety by 

incorporating vehicle dynamic limitations.  Finally, the Conclusion (Chapter 6) 

summarizes the work and provides avenues for continuing this research. 

1.1 Prior Work 

Khatib first proposed the concept of potential field control [Khatib 1985].  His 

research was directed toward robotic manipulators as well as mobile robots.  The idea 
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behind the potential field was, “The manipulator moves in a field of forces.  The position 

to be reached is an attractive pole for the end effector and obstacles are repulsive surfaces 

for the manipulator parts.” [Khatib 1985]  The attractive and repulsive potentials were 

simple functions based on the distance to either the goal or an obstacle.  The total 

potential was the sum of the individual goal and obstacle potentials.  The control effort 

applied to the robot was the gradient of the potential field (magnitude and direction), 

along with dissipative terms to ensure asymptotic stability.  This potential field controller 

provided a simple method to reach a goal while avoiding obstacles.  However, it suffered 

from the fact that local minima were present in the potential field, which could cause the 

robot to be attracted to the local minima instead of the goal location.  Several attempts 

were made to correct the local minima problem.  For example, Kholsa and Volpe 

modified the repulsive potential such that the contours tended to circles as distance from 

the obstacles increased [Kholsa 1988]. 

Another approach to eliminate the local minima was to generate the potential field by 

solving the Laplace equation, i.e. harmonic functions.  One method to generate harmonic 

potential fields is to calculate analytic solutions to the Laplace equation.  Analytic 

harmonic functions are typically modeled to represent fluid flow, i.e. hydrodynamic 

potentials.  Akishita, Kawamura, and Hayashi were the first to propose analytic solutions 

to the Laplace equation for potential field control [Akishita 1990].  Obstacles were 

modeled as doublets (defined in Section 2.1.1) inserted into the flow.  Kim and Khosla 

studied using distributed sources as opposed to the traditional point source to 

approximate polygon shaped obstacles [Kim 1992].  More recently Waydo and Murray 

inserted circular obstacles into analytic potential fields using the Circle Theorem [Waydo 
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2003].  Their research also examined the effects of multiple obstacles in the potential 

field. 

Sato and Connolly, Burns, and Weiss independently pioneered the use of numerical 

solutions to the Laplace equation, specifically using Dirichlet boundary conditions 

[Connolly 1990, Sato 1993].  Dirichlet boundary conditions approximate Khatib’s 

potential, i.e. the robot is repelled from an obstacle.  However, as Section 3.2.1 describes, 

they may not be the most effective boundary condition.  Keymeulen and Decuyper 

studied different types of boundary conditions, in particular Dirichlet and Neumann 

boundary conditions [Keymeulen 1994].  Specifically, they studied how the number of 

singular points in the potential field varies with the boundary conditions.  Connolly and 

Grupen extended the boundary conditions to combining both Dirichlet and Neumann 

boundary conditions in a single potential field [Connolly 1993]. 

In addition to the fluid dynamics analogy, other physical phenomena have also been 

studied as foundations for the potential field.  For example Masoud, Masoud, and 

Bayoumi employed a stress analogy utilizing biharmonic functions for the potential fields 

[Masoud 1994].  Biharmonic potential fields do not have the large streamline curvature 

that may occur in harmonic potential fields.  A heat flow analogy has also been proposed 

[Wang 2000].  In the heat flow potential, the robot follows the heat flux.  Finally, 

Guldner and Utkin utilized an electrostatic potential field [Guldner 1995].  Electrostatic 

potentials are essentially hydrodynamic potentials consisting of only sources and sinks 

(described in Sections 2.1.1 and 3.1.1). 

The research into potential field control has not only concentrated on the potential 

field development.  Efforts have also been placed on incorporating potential field 
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techniques into a wider range of control schemes.  One area of interest is incorporating 

moving obstacles into the potential fields [Ge 2002, Newman 1987].  Analytic harmonic 

functions can also be modified to allow moving obstacles, [Akishita 1990, Waydo 2003].  

Another area of interest is adapting potential field methods for cooperative and multiple 

robot control [Song 2002, Sullivan 2003].  The potential field method has also been 

modified to deflect a virtual beam as opposed to controlling the robot directly [Hesse 

2007, Quinlan 1993].  The robot then follows the beam as a path.  Potential field methods 

have also been applied to underwater vehicles [Eichhorn 2004]. 

Potential field techniques have also been adapted to drive full size vehicles as 

opposed to small mobile robots.  In particular, Kyriakopoulos, Kakambouras, and, 

Krikelis considered control of nonholonomic vehicles [Kyriakopoulos 1995].  This is 

significant because they began to appreciate the fact that most vehicles cannot react 

instantaneously to follow the gradient of the potential field.  Accounting for vehicle 

dynamics is a critical aspect of the research presented in this dissertation, although the 

approach uses a streamline tracking controller instead of the cascaded 

holonomic/nonholonomic controllers employed by Kyriakopoulos.  Rossetter and Gerdes 

applied potential field control to automobile lane keeping [Rossetter 2003].  Their 

research did not use traditional goal/obstacle potential fields.  Instead, a parabolic 

potential centered on the lane was created.  Finally, off road navigation of full size 

vehicles has also been studied [Shimoda 2005].  This research also did not use traditional 

potential fields.  The potential field was defined over a trajectory space consisting of steer 

angle and speed axes.  It was created by summing individual potential fields 

corresponding to obstacles, vehicle constraints, and speed.  The vehicle control 
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calculation was also non-traditional for potential fields.  The steer angle and speed 

applied to the vehicle were the location in the trajectory space where the potential field 

was minimized.  This results in the potential field effectively serving as a cost function 

for the steer angle and speed commands. 

1.2 Contributions 

This research advances the body of knowledge in two broad areas: potential field 

generation and controlling a vehicle to a streamline.  First, different analytical and 

numerical methods of generating potential fields are compared.  The analytic 

comparisons concentrate on various methods to represent generic shaped obstacles.  

Specifically the flow resulting from using a combination of circles to approximate an 

obstacle is studied.  The numeric comparisons investigate how different boundary 

conditions along the obstacle and world edge affect the flow.  While these potential field 

generation techniques are not novel, an in depth study comparing analytic and numeric 

solutions has not been previously presented.  Additionally, to overcome the shortcomings 

of the existing techniques, two new potential field generation techniques, one analytical 

and one numerical, are proposed and demonstrated. 

Second, the traditional potential field controller is modified to account for the 

dynamics of high speed front wheel steered (as opposed to skid steered) vehicles.  

Developing this controller involves several new techniques.  Specifically, for the vehicle 

controller, an issue with the model becoming uncontrollable at a critical speed is exposed 

and a method to counter the problem is proposed.  The potential field tracking system is 

also augmented to follow a reference streamline in addition to the typical potential field 
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gradient.  This prohibits tracking errors (due to system dynamics) from compounding 

when the traditional potential field gradient controller is used.  The streamline tracking 

controller is then augmented to account for the specific dynamics of ground vehicles.  In 

particular, the reference speed and lateral acceleration are limited and the reference 

streamline is shifted as the vehicle travels.  To verify the potential field and control 

techniques developed in this dissertation, simulation tests are performed using a widely 

accepted vehicle model. 
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2 BACKGROUND 

Potential flow theory forms the building block for the path planning algorithms in this 

research.  Before the path planning techniques are described, some foundational 

knowledge is presented.  The underlying theory behind potential flow, specifically in 

relation to fluid dynamics, is explained along with the analytical and numerical 

techniques used to calculate the flow.  Additionally, the vehicle model used in the 

simulation study is presented. 

2.1 Potential Flow 

Potential function techniques have long been used to model certain types of fluid flow 

[Currie 1993, Milne-Thomson 1996].  In particular, the fluid flow must be in steady state 

(no change with time), incompressible (no change in density), inviscid (viscous terms are 

negligible), and irrotational (zero vorticity) to be modeled with potential functions.  For a 

fluid meeting these assumptions with position and velocity vectors defined as 

 ˆ ˆE N x I J  (2.1) 

and 

 ˆ ˆ
E NV V V I J  (2.2) 

respectively, the continuity equation (conservation of mass) becomes 

 0NE
VV

E N


   

 
V  (2.3) 
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i.e. the divergence of the velocity vector field is identically zero.  The irrotational 

assumption results in 

 0N E
V V

E N

 
   

 
V  (2.4) 

This is equivalent to stating that the velocity vector field is conservative, i.e. a vector 

field is conservative if and only if its curl is identically zero (assuming the vector field is 

defined over a simply connected region) [Barr 1997].  For the velocity vector field to be 

conservative, a scalar velocity potential, , must exist [Barr 1997] such that 

 ˆ ˆ
E N

 


 
  

 
V I J  (2.5) 

i.e. 

 ,E NV V
E N

  
 
 

 (2.6) 

Contours of the velocity potential are known as equipotential lines.  Inserting Equation 

(2.6) into (2.3) yields the Laplace equation, 

 
2 2

2

2 2
0

E N

 


 
   

 
 (2.7) 

2  is known as the Laplace operator.  This is the equation that must be satisfied to 

generate potential flow. 

The stream function, , is defined as 

 ˆ ˆ
N E

  
 
 

V I J  (2.8) 

i.e. 

 ,E NV V
N E

  
  
 

 (2.9) 
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Note that by inserting Equation (2.9) into (2.4) the stream function also satisfies the 

Laplace equation, 

 
2 2

2

2 2
0

x y

 


 
   

 
 (2.10) 

Contours of the stream function are known as streamlines.  Streamlines are tangent to the 

fluid flow; the fluid flow follows the streamlines.  If a velocity vector field is derived 

from a potential field, its corresponding streamlines and equipotential lines will always 

be perpendicular, i.e. Figure 2.1 below. 

The velocity potential and stream function are typically combined into a complex 

potential, 

 F i    (2.11) 

along with a complex position, 

 z E iN   (2.12) 

where E and N are the east and north positions respectively. 

To determine both the velocity potential and stream function, the two partial 

differential equations, Equations (2.7) and (2.10) must be solved.  Both of these equations 

are the Laplace equation.  Solutions to the Laplace equation are known as harmonic 

functions.  A critical property of harmonic functions is that they have no local minima or 

maxima interior to the flow [Needham 1997].  This property makes harmonic functions 

quite popular in the area of potential field control as was mentioned earlier.  Two general 

methods to solve the Laplace equation exist: analytical and numerical. 
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2.1.1 Analytical Solutions 

Analytic solutions to the Laplace equation have been developed by fluid dynamicists 

to model common fluid flows.  In particular, for this research uniform, source/sink, 

vortex, and doublet flows are of interest. 

Uniform flow is flow in a straight line.  Given a velocity magnitude, U, and a 

direction,  (from the E-axis), the complex potential for uniform flow is 

 
iF Ue z  (2.13) 

and the velocity is 

 ˆ ˆcos sinU U  V I J  (2.14) 

The velocity potential, stream function, and contour lines for uniform flow are shown in 

Figure 2.1.  Recall that the fluid flow follows the streamlines and thus models straight 

line flow.  This flow is not directly useful in vehicle path planning, but it is a simple flow 

for testing techniques and is used as the basis for more complex flows. 



www.manaraa.com

 

12 

 
Figure 2.1 Uniform flow complex potential 

Sources or sinks model flow from a faucet or to a drain, except the flow is two-

dimensional.  This flow allows fluid to be added to or removed from the flow, violating 

the conservation of mass.  In particular, a singularity exists at the location of the source or 

sink.  Given a strength C, the potential for source/sink flow is 

 
 

ln
i

F C ze
  

 
 (2.15) 

The sign of C determines whether the potential is a source or sink; a positive C is a 

source (fluid is introduced into the flow).  Note that at the location of the source/sink the 

potential and velocity are both infinite.  Also, note that this form is slightly modified 

from most references by the introduction of a rotation angle, .  The rotation angle does 

not change the flow created; it simply rotates the stream function discontinuity.  This is 


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important when the gradient is calculated numerically as the discontinuity produces an 

incorrect gradient.  The rotation allows the discontinuity to be out of the region of 

interest.  The potential for source flow is shown in Figure 2.2.  The only difference for 

sink flow is that the images are mirrored about the E-N plane.  Note that the flow is from 

low potential to high.  This is slightly counterintuitive physically, but mathematically 

correct.  For path planning, the vehicle will drive up the slope of the potential instead of 

following it down. 

 
Figure 2.2 Source flow complex potential 

Sources and sinks are used to model start and goal locations in path planning.  

Sources can also be used as a simple obstacle model.  The flow is directly away from the 

source thus inhibiting vehicle paths from approaching the source.  This direct repulsion 

represents electrostatic potentials more than fluid flow.  Source and sink flow also forms 

Discontinuity 


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the basis of doublet flow that is used for adding circular obstacles to a potential field as is 

discussed below. 

Vortex flow simply swaps the real and imaginary parts, i.e. the stream function and 

velocity potential, of source/sink flow.  This flow represents rotation in the fluid as 

happens near drains.  The equation for vortex flow is 

 lnF iC z  (2.16) 

Note that a rotation angle could be added as with the source/sink flow, but because vortex 

flow is not directly used in path planning, it is not included.  The potential for vortex flow 

is shown in Figure 2.3.  The flow circles the vortex with streamlines of constant radius.  

This creates a singular point at the vortex that has infinite vorticity, just as the source/sink 

has infinite flow rate.  Vortex flow is not used in path planning, but it is the potential field 

version of tracking a circle, which is the basis of the vehicle controller, described in 

Chapter 4 and so is used in controller testing. 
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Figure 2.3 Vortex flow complex potential 

The final basis flow that this research relies upon is doublet flow.  A doublet is 

created when a source and sink lie infinitely close.  In particular, a doublet can be 

inserted into uniform flow to produce a circular obstacle of radius a: 

 
2a

F U z
z

 
  

 
 (2.17) 

A circular obstacle in uniform flow is shown in Figure 2.4.  Note that the streamlines 

form a circle.  Inside this circle, the doublet can be seen.  However, since fluid cannot 

pass through a streamline the flow inside the circle is unimportant.  In practice, only flow 

outside of the circle is calculated.  Doublets form the basis for analytically representing 

obstacles in potential fields.  However, the potential must be generalized to insert a circle 

into any existing flow. 
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Figure 2.4 Circular obstacle in uniform flow 

Milne-Thomson introduced the Circle Theorem which allows a circular obstacle to be 

inserted into a generic flow [Milne-Thomson 1996].  The resulting potential is 

  
2

u u

a
F F z F

z

 
   

 
 (2.18) 

where Fu is the undisturbed potential.  F  is the conjugate analytic function defined as 

    F z F z  (2.19) 

Note that inserting a circular obstacle into uniform flow satisfies Equation (2.18).  Also 

note that on the circle edge, |z| = a, the stream function is identically zero; thus the circle 

is a streamline. 
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        
2

2 0u u u u u uz a

z zz
F F z F F z F F z F z

z z
 



   
               

 (2.20) 

The procedure for programmatically computing the complex potential is described 

below and represented in Figure 2.5. 

1. The undisturbed potential is calculated over a grid of points (). 

2. The original grid points are transformed using the conjugate analytic function 

argument, 
2

trans

a
z

z
 .  For this transformation, only points that satisfy 

2 2 0.9E N a   are considered.  As is previously stated, the potential inside 

the circle is not important.  The slight overlap (0.9a) aids interpolation in the 

next step.  The transformed points () are now inside the circle. 

3. The conjugate of the undisturbed potential is interpolated over the transformed 

coordinates and becomes the conjugate analytic potential.  This interpolation 

is made more difficult due to the transformed coordinates being irregularly 

spaced.  In Matlab, the command “griddata” must be used in place of 

“interp2”. 

4. The undisturbed potential is added to the conjugate analytic potential to 

produce the total potential. 
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Figure 2.5 Circle Theorem coordinate transformation 

As an example of the Circle Theorem, consider a circle inserted between a source and 

sink.  To keep the method general, the potential is not analytically calculated but 

determined using the algorithm above.  This potential is shown in Figure 2.6.  Notice that 

the circle is a streamline. 
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Figure 2.6 Circular obstacle in source/sink flow 

The different flows presented above provide the basis for the analytic methods to 

calculate potential field based vehicle paths.  Because the Laplace equation is linear, a 

linear combination of harmonic functions is also harmonic.  This concept has already 

been used when the circular obstacle in source/sink flow is generated by superimposing a 

source and sink (explained in more detail is Section 3.1) and then applying the Circle 

Theorem. 

The simple basis potentials described above can be combined into quite complicated 

world maps and corresponding potential fields.  A downside of this approach is that a 

streamline in a basis potential is not guaranteed to be a streamline in the overall potential.  

This causes problems when an obstacle edge is intended to be a streamline, e.g. the Circle 
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Theorem.  Section 3.1 of this dissertation investigates many methods of combining the 

basis potentials to generate streamlines that closely match the true obstacle shape. 

2.1.2 Numerical Solutions 

The first step in developing numerical solutions to the Laplace equation is to 

discretize the equation.  To do this, a grid of solution points is created over the solution 

area.  There are many methods to generate the solution grid [Ferziger 2002].  However, 

this research utilizes a simple square grid.  A center difference is used to approximate the 

second derivatives.  The Laplace equation can be generalized by including a forcing 

function, G, to become the Poisson equation, 

 
2 2

2

2 2
G

E N

 


 
   

 
 (2.21) 

Note that if the forcing function is zero, the Poisson equation simplifies to the Laplace 

equation.  The forcing function is used in the numeric solution algorithm.  The discrete 

Poisson equation is 

 1, , 1, , 1 , , 12

, ,2 2

2 2j k j k j k j k j k j k

j k j kG
E N

     


      
   

 
 (2.22) 

where j and k are the indices of the east and north coordinates respectively and E and 

N are the east and north grid point spacing.  Note that the discrete solution is in general 

real.  The velocity potential is calculated, but not the stream function. 

The discrete Poisson equation can be solved directly by rearranging the M equations 

(where M is the total number of solution points) into matrix form and inverting an MM 

matrix to solve for the potential at each point in the solution grid.  However, the solution 

grid is typically large enough that the matrix inversion becomes impractical to perform 
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quickly.  Instead, an approximate solution is computed recursively.  This research uses a 

multi-grid Gauss-Seidel method with successive over-relaxation to solve the Poisson 

equation. 

The Gauss-Seidel method is an iterative approach to solving discrete partial 

differential equations [Ferziger 1998].  For the discrete Poisson equation, the algorithm 

involves rearranging Equation (2.22) to solve for the potential in terms of its surrounding 

potential and the forcing function: 

 
   

 

2 2 2 2

, 1 , 1 1, 1, ,

, 2 22

j k j k j k j k j k

j k

E N G E N

E N

   


          


 
 (2.23) 

This solution is then repeated for each of the points in the solution grid.  Once the entire 

grid is solved, the residual error, R, is calculated, 

 1, , 1, , 1 , , 1

, , 2 2

2 2j k j k j k j k j k j k

j k j kR G
E N

           
  

 
 (2.24) 

If the norm of the residual is small enough, the algorithm is complete; otherwise, 

Equation (2.23) is used over the solution grid again.  The residual norm used to test for 

convergence is scaled by the mean of E
2
 and N

2
 to remove the dependence on the grid 

spacing. 

Successive over-relaxation modifies Equation (2.23) to speed up convergence 

[Ferziger 2002]: 

   1

, , ,1m m

j k j k j k       (2.25) 

where m is the iteration index and ,j k  is the output of Equation (2.23).  The value of the 

relaxation factor, , can vary between 0 and 2.  The optimal relaxation factor (for fastest 
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convergence) depends on the particular problem; for this work,   1.4 is used.  Note that 

when   1 the method simplifies to the Gauss-Seidel method. 

Multi-grid methods also speed up convergence.  However, they work on the entire 

solution grid instead of at the individual solution point level.  Even with successive over-

relaxation, a solution point in the Gauss-Seidel method is only affected by its immediate 

neighbors.  Therefore, it can take an excessively long time for a solution to propagate 

from known points to the entire solution grid.  Multi-grid methods attempt to address this 

problem by changing the number of points in the solution grid [Briggs 1987].  When 

there are fewer points in the solution grid, information propagates through the grid faster.  

Ultimately, the coarse grid information must be passed back to the original, fine grid.  In 

particular, once a candidate solution, *
, for the Poisson equation is calculated, its 

residual can be determined using Equation (2.24).  Although the exact solution is not 

known, a solution error can be defined, 

 
e *     (2.26) 

The Poisson operator is linear, allowing the solution error to be related to the residual, i.e. 

the solution error satisfies the Poisson equation with the residual as a forcing function: 

  2 e 2 2 * G G R R          (2.27) 

Note that for compactness Equation (2.27) is written in the continuous operator notation, 

however the concept applies to the discrete Poisson equation as well.  Equation (2.27) 

allows the residual to be used as a forcing function to calculate the solution error.  The 

residual forcing function is the reason the multi grid algorithm must solve the Poisson 

equation instead of the Laplace equation. 
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To speed convergence, the residual and solution grid are down-sampled before 

solving the solution error/residual problem.  The calculated solution error is then up-

sampled back to the original grid and added to the original candidate solution to produce 

a better solution.  Down-sampling is simply taking every other point in the grid; while 

up-sampling is a linear interpolation.  Additionally, before the down-sampling and after 

the up-sampling a set number of Gauss-Seidel iterations are run to smooth the solution.  

The technique to solve the down-sampled Poisson’s equation is to repeat the smoothing 

and down-sampling until the grid size is small enough to be solved without further down-

sampling. 

Overall, the steps in the multi-grid algorithm are 

Initialize the Poisson equation solution (typically to zero), and set the forcing 

function to zero. 

Compute the residual of the Poisson equation solution, Equation (2.24). 

While the residual is not below a tolerance (0.0001): 

While the grid size is not at the minimum size (55): 

Run a set number of smoothing iterations (10) of the Gauss-Seidel with 

successive over-relaxation algorithm to update the Poisson equation 

solution, Equations (2.25) and (2.23). 

Save the Poisson equation solution with the corresponding grid size.  

Note: the solution at a lower grid size is a correction to this solution. 

Compute the residual of the Poisson equation solution, Equation (2.24). 

Down-sample the residual and solution grid to reduce the grid size. 

Set the forcing function to the down-sampled residual and initialize the 

down-sampled solution (to zero). 

When the grid size is at the minimum, run the Gauss-Seidel with successive 

over-relaxation algorithm until the residual is below a tolerance (0.0001) to 
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produce a solution to the Poisson equation, Equations (2.25) and (2.23). 

While the grid size is not at the original size: 

Up-sample the solution to obtain an error correction, which increases the 

grid size. 

Add the up-sampled error correction to the Poisson equation solution at 

the corresponding grid size (saved above) to generate an updated Poisson 

equation solution. 

Run a set number of smoothing iterations (10) of the Gauss-Seidel with 

successive over-relaxation algorithm to update the Poisson equation 

solution, Equations (2.25) and (2.23). 

When the grid size is back to the original, compute the residual of the 

Poisson equation solution, Equation (2.24). 

When the residual is below the tolerance threshold, the multi-grid algorithm is 

complete. 

Boundary conditions are what allow numerical solutions of the Laplace equation to 

model different flows.  The area immediately surrounding the solution grid as well as any 

features inside the solution grid (starts, goals, and obstacles) must be represented by 

boundary conditions.  The need for boundary conditions is also a major difference 

between analytical and numeric solutions.  Analytic solutions are global in scope, while 

numeric solutions only exist on a finite space.  In particular, two boundary conditions are 

common in fluid dynamics: Dirichlet and Neumann [Ferziger 2002]. 

Dirichlet boundary conditions set the edge of the potential function to a specified 

value.  This boundary condition is used to model a start or goal, although unlike an 

analytical source or sink, the potential of the numerical equivalent is finite.  Dirichlet 

boundary conditions are also often used on the boundary of the solution grid due to their 
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simplicity and fast solution time.  Dirichlet boundary conditions can also be used to 

model simple obstacles similar to using analytical sources as obstacles. 

Neumann boundary conditions set the derivative of the potential field, i.e. the fluid 

velocity, at the edge of the solution grid.  This is the more common boundary condition 

fluid dynamicists use to model obstacles and the solution boundary because it has more 

physical meaning to fluids.  Specifically, the fluid velocity vector along an obstacle must 

be parallel with the obstacle boundary such that no fluid can flow into or out of the 

obstacle.  Numerically, this is accomplished by setting the potential equal to a point along 

a line perpendicular to the obstacle edge a certain distance into the flow.  Therefore, the 

gradient of the potential must be in the direction of the obstacle edge.  Along with 

modeling an obstacle, this boundary condition can be used to model the solution edge so 

that fluid does not leave the solution area.  The down side of this boundary condition is 

that it significantly increases the solution time for two reasons.  First, the boundary 

potential changes each iteration, so it effectively must be calculated along with the 

solution potential.  Second, because the boundary potential is equal to its interior 

neighbor, the boundary does not provide a starting point for the solution to propagate to 

the remainder of the solution grid.  The solution must propagate from only the start and 

goal location instead of from the entire solution boundary. 

As with analytical solutions being built from many basis potentials, numerical 

solutions typically use a combination of boundary conditions.  For instance, the type of 

boundary condition used on obstacle edges greatly influences the character of the 

resulting potential [Keymeulen 1994].  Section 3.2 of this dissertation describes the 
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different boundary conditions and grades the calculated potentials using the specific 

requirements of the vehicle control algorithm given in Chapter 4. 

2.2 Vehicle Model 

To test the path planning algorithms, a nonlinear vehicle model is utilized [Daily 

2004].  This model has been extensively used and verified to model lateral vehicle 

dynamics [Rossetter 2003, Smith 1995, Wenzel 2005].  A schematic of the vehicle model 

is shown in Figure 2.7.  The lateral dynamics of this vehicle model are described by 
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 (2.28) 

where r is the vehicle’s yaw rate (rotation about a vertical axis),  is the side slip 

(difference in heading and velocity vector direction), V is the magnitude of the velocity 

vector, and  is the steer angle input.  The lateral forces, Fy•, are described below and the 

vehicle parameters, m, a, b, etc., are given in Table 2.1 along with the tire parameters. 
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Figure 2.7 Four wheel vehicle model schematic 

The lateral force at each tire depends on the slip angle at the tire, , and the vertical 

load on the tire as well as tire and surface properties.  Many models of the tire forces 

exist.  For this research the Dugoff model is used [Dugoff 1970]: 
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 (2.29) 

Note that Fymax•, the peak lateral force, is a property of the tire/surface interaction and 

vertical load on the tire, and C•T is the tire cornering stiffness, a property of the tire.  

Although each tire has its individual peak force and cornering stiffness, typically the two 

tires on the same axle are identical.  Due to vehicle geometry, the front and rear tires 

often have different properties.  Table 2.1 lists the parameters used to simulate the lateral 

vehicle dynamics.  These parameters represent a 1997 Corvette [Rossetter 2003].  Further 

research into estimating vehicle properties (specifically Dugoff tire properties) is 

presented in [Daily 2007]. 

Table 2.1 Lateral vehicle model parameters 

Variable Parameter Value Units 

m Mass 1860 kg
 

Iz Vertical moment of inertia 3100 kgm
2 

a Distance from center of gravity to front axle 1.37 m 

b Distance from center of gravity to rear axle 1.43 m 

T Track width 1.5 m 

CFT Front tire cornering stiffness 72500 N/rad 

CRT Rear tire cornering stiffness 72500 N/rad 

FymaxF Front tire peak lateral force 3960 N 

FymaxR Rear tire peak lateral force 3794 N 
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Note that this vehicle model makes several assumptions; the speed is assumed 

constant and thus longitudinal forces are negligible and all non-planar motion such as 

roll, pitch, and vertical acceleration is ignored.  While models for the neglected dynamics 

exist, as long as the vehicle maneuver is not extreme, the neglected dynamics do not 

significantly alter the vehicle response.  The path planning algorithm described below has 

safe guards to prevent drastic maneuvers. 

Although Equation (2.28) assumes a constant vehicle speed, an important aspect of 

the path planning algorithm presented below is the ability to adjust the vehicle’s speed 

when near obstacles.  For this reason, a model for the vehicle’s speed is required.  Most 

vehicles now have a cruise control module and algorithms for controlling vehicle speed 

are widely used.  The goal of this research is lateral control, so instead of redeveloping a 

vehicle speed model and controller, an existing closed-loop model with a desired speed 

input and actual speed output developed by Rajamani is used [Rajamani 2006].  This 

model assumes a first order lag between the desired longitudinal acceleration, throttle 

input, and actual longitudinal acceleration, and an integrator from longitudinal 

acceleration to speed.  The throttle input comes from a PI-controller.  Overall, the closed-

loop dynamics from reference speed, Vref, to actual speed, V, are described by the transfer 

function 

 
,speed ,speed

spe

3 2

ed ,speed ,speed

P I

ref P Is s

k s kV

V k s k  





 (2.30) 

When simulated, this transfer function is discretized at the sample rate of 100 Hz.  Table 

2.2 lists the parameters used when simulating the vehicle, which are taken directly from 

[Rajamani 2006]. 
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Table 2.2 Closed-loop speed model parameters 

Variable Parameter Value Units 

kP,speed Throttle proportional control gain 0.75 1/s
 

kI,speed Throttle integral control gain 0.1875 1/s
2
 

speed Longitudinal acceleration time constant 0.5 s 

One critical note about the combined lateral/longitudinal vehicle model is that it is 

either nonlinear (if speed is counted as a state in the combined model) or more typically 

time varying (speed is first calculated independent of lateral dynamics then becomes a 

parameter in the lateral model).  In the second case, typical linear stability criteria are not 

guaranteed to yield correct results.  This aspect of the method’s stability is not considered 

in this research.  In general, the speed varies slowly enough that fixed parameter stability 

analysis should be valid.  However, several methods exist to further examine the time-

varying stability [Packard 1993, Tan 2000], and this is a topic that should be studied 

further in all vehicle control applications.  In particular, instability has been observed in 

unrelated autonomous ground vehicle testing when the vehicle was both turning and 

accelerating heavily.  The exact cause was not determined, but both the lateral and 

longitudinal systems were independently stable, and for most operation, the combined 

system was stable.  The most likely explanation is the coupling when both modes were 

simultaneously excited. 

In addition to the vehicle model, kinematic relationships are needed to determine the 

vehicle’s global east and north location, E and N respectively, and its heading, : 
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 (2.31) 
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Note that , the vehicle’s course, is defined as 

      (2.32) 

Therefore, its derivative is 

 r     (2.33) 

with   given in Equation (2.28). 

This vehicle model, from steer angle and desired speed to global position and 

heading, is used in all of the simulation tests presented in this research.  The model will 

also be the starting point for developing the lateral controller presented in Chapter 4. 
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3 OBSTACLE REPRESENTATION 

The potential flow techniques described in Section 2.1 can be used to develop flow 

fields that have a start and goal position and which avoid any obstacles in the area to be 

traversed.  This research imposes specific requirements on the potential field being 

created.  Typical potential field control relies only on the gradient of the potential field 

for the control input [Ge 2002, Khatib 1985, Krogh 1986, Kyriakopoulos 1995].  The 

algorithm developed in Chapter 4 requires an explicit stream function in addition to the 

gradient field.  Therefore, either a technique must be developed which explicitly 

calculates the stream function, or a method to calculate the stream function from the 

gradient field must be employed. 

This chapter examines two broad techniques for generating potential functions, 

analytical and numerical.  In Section 3.1 analytical methods are considered.  In particular, 

the viable methods under consideration are analyzed based on a standard set of tests 

involving multiple obstacles in uniform flow.  Section 3.1.1 looks at existing methods to 

represent obstacles as low strength sources.  Section 3.1.2 describes the technique Milne-

Thomson developed to add circular obstacles to a flow.  Section 3.1.3 analyzes Waydo 

and Murray’s extension to the Milne-Thomson Theorem for averaging the velocity vector 

fields from individual circles and extends their approach to the case with touching circles.  

In Section 3.1.4 a new method is developed for averaging the stream functions of 
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individual obstacles.  Section 3.2 investigates numerical solutions.  As before, the 

methods are compared using a common set of tests.  Sections 3.2.1 and 3.2.2 analyze 

Dirichlet and Neumann boundary conditions respectively.  Finally, Section 3.2.3 presents 

a new method of calculating the stream function directly and the boundary conditions that 

are used in the method. 

3.1 Analytical Solutions 

Analytical solutions for the potential field offer many benefits.  They explicitly 

calculate a stream function and the calculation is often much quicker than numeric 

solutions.  The first step with an analytic solution is to generate a field with a start and 

goal, but no obstacles.  Two such fields generated using a source and sink are shown in 

Figure 3.1.  The potential for these fields is 

    start start goal goalln lnF C z z C z z     (3.1) 

where zstart and zgoal are the start and goal locations respectively.  Notice that due to the 

linear nature of the Laplace equation, the start and goal locations can be shifted arbitrarily 

and any number of sources and sinks (or other basis potentials) can be summed and still 

yield a harmonic function.  The difference in the two plots of Figure 3.1 is the relative 

strength of the source and sink, Cstart and Cgoal respectively. 
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Figure 3.1 Source and sink potential 

One important feature of this field is that all streamlines should intersect the start, and 

more importantly, the goal.  Therefore, no matter what streamline a vehicle is following, 

it will eventually reach the goal.  The left field exhibits this feature while the right does 

not.  The difference is that in the left field the source and sink are equal strength; 

however, the source is stronger than the sink in the right field.  Notice that in the right 

field some streamlines go to infinity instead of approaching the sink.  Therefore, a vehicle 

may not reach the goal location.  Alternatively, potentials where the sink is stronger than 

the source look like the right plot except with the start and goal reversed.  This condition 

is not as bad since all streamlines do lead to the goal.  However, if the vehicle starts near 
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the source, then a portion of the usable space will be disregarded since some streamlines 

do not intersect the source. 

Note that the overall strength of the start and goal does not matter for this research.  

The strength determines the amount of fluid being added to or removed from the flow 

and thus the magnitude of the flow velocity.  For traditional potential field controllers this 

also determines the desired vehicle speed.  However, for this research the desired speed 

comes from a separate process so only the flow direction matters.  Thus, as long as the 

source strength matches the sink strength, the overall strength is not critical. 

3.1.1 Small Sources in Flow 

The first obstacle model to investigate is a small source.  As Section 2.1.1 described, 

this obstacle model more closely matches an electrostatic potential instead of a 

hydrodynamics potential.  The potential generated by placing a source in uniform flow is 

shown in Figure 3.2.  This potential is given by 

 lnF C z Uz   (3.2) 

A stagnation point is defined as a point in the flow where the velocity is zero.  The 

stagnation point defines the leading edge of the obstacle.  It is also a point where the 

streamline splits.  Outside of fluid dynamics, this point would be known as a saddle point 

and a separatrix in the flow.  On one side of the streamline passing through the stagnation 

point, fluid comes from the uniform flow; on the other side, the fluid comes from the 

source.  For this potential, the stagnation point is located at 

 stag

C
z

U
   (3.3) 
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Notice that the stagnation point (and thus the obstacle boundary) depends on flow 

parameters, namely the uniform flow speed.  This causes problems when dealing with 

more complex flows because the flow parameters are not generally known, or easily 

quantifiable.  The circle labeled as “obstacle” is simply there to aid comparisons to other 

methods.  The true obstacle in this case is the entire region defined by the separatrix, 

which extends infinitely downstream of the source.  This is typically not a desirable 

feature since an obstacle would often remove an area much larger than itself from the 

flow. 

 
Figure 3.2 Source in uniform flow 

With an analytic circular obstacle, Figures 2.4 and 2.6, stagnation points are also 

present at the leading and trailing edge of the circle.  However, because there are two 

stagnation points, the area defined by the separatrix is finite.  In particular, the obstacle 
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boundary is exactly equal to the circle itself.  In terms of the flow, the finite obstacle is 

due to the doublet that creates the circle.  The doublet is formed from a source and a sink, 

so no net fluid is added to the flow.  Also note that the obstacle does not require flow 

parameters to define as the source stagnation point does. 

For an obstacle (defined by strength and location Cobs and zobs respectively) inserted 

into start/goal flow, the potential, shown in Figure 3.3, is given by 

 
     

   
start start obs obs

start obs goal

ln ln

ln

F z C z z C z z

C C z z

   

  
 (3.4) 

In general, the obstacle strength is much less than the start; the goal strength must be 

equal to the sum of the sources as described above.  The stagnation point defining the 

obstacle is given by 

 
 

 
start obs obs start goal start start obs obs start obs

stag

start obs goal start start obs obs

C z C z z C z z C z z
z

C C z C z C z

  


  
 (3.5) 

Calculating the leading edge of the obstacle requires intimate knowledge of the 

underlying basis flow.  The design problem would involve determining an obstacle 

source location and strength to match an identified obstacle knowing the underlying flow, 

which is a much more difficult problem.  Notice that the area contained by the separatrix 

is finite in this flow, but it extends from the stagnation point to the goal location.  This 

creates a large wake downstream of the obstacle that has been rendered unusable.  

Effectively, the disturbance to the potential created by the obstacle does not vanish with 

distance from the obstacle. 
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Figure 3.3 Source in source/sink flow 

Modifications to the source obstacle method have been used for obstacle avoidance, 

[Guldner 1995, Kim 1992].  However, the deficiencies in the flow created by source 

obstacles, e.g. the disturbance not vanishing with distance and the difficulty in 

determining the obstacle shape and location, lead it to be discarded as a practical, 

analytical solution in this dissertation.  This obstacle type is revisited in the numeric 

solution when the obstacle shape can, to a degree, be more strictly controlled. 

The most common method of representing obstacles in potential fields is using the 

Circle Theorem described in Section 2.1.1.  However, several hurdles need to be 

overcome in order to use this method.  First, if an additional obstacle is added to flow 

already containing obstacles, then the streamlines defining the previous obstacles will be 

distorted to some extent.  Second, not all obstacles are circular.  The solution to both 
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these problems may lie together.  If a method to place circular obstacles next to each 

other without distorting the defining streamline can be developed, then a generic shape 

obstacle can be generated using many circles. 

3.1.2 Circle Theorem Method 

To study the interaction between multiple obstacles in a potential field, a test scenario 

of multiple circular obstacles inserted into uniform flow is used.  The obstacles are tested 

with vertical and horizontal orientations, both spaced and touching.  Additionally, a test 

of five circles creating a rough wall is tested.  The objective of these tests is to determine 

a method of generating generic obstacle shapes using known methods for circular 

obstacles. 

The first method tested is the Circle Theorem (CT) method.  This method is a direct 

application of the Circle Theorem [Milne-Thomson 1996] using Equation (2.18).  It is 

important to note that using this method, the order of adding circles affects the resulting 

flow.  The theorem requires, and modifies, the existing flow.  Therefore, only the last 

circle added is guaranteed to exactly match a streamline.  The streamline distortion can 

be observed in the test scenario of two vertically separated circular obstacles inserted into 

horizontal uniform flow from left to right, shown in Figure 3.4.  Only the streamlines are 

shown since these are what the vehicle would follow.  The lower circle is added to the 

flow first.  Because of this, the addition of the upper circle causes the streamlines that 

define the lower circle, the separatrices, to become distorted from the desired circle.  

However, at a spacing of only one radius between circle edges, the distortion is not large.  

The missing information in the center of the circles is due to the interpolation required to 

perform this technique.  However, recall that the stream function inside the separatrices is 
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not used in the path planning and so is only shown (and calculated) to fully illustrate the 

effects of multiple circles. 

 
Figure 3.4 Two vertical, separated circles in uniform flow calculated using the Circle 

Theorem method 

The distortion caused by the second circle becomes more apparent when the circles 

touch, as shown in Figure 3.5.  More importantly, fluid still flows between the two circles 

as is represented by the streamlines that pass between them.  The fact that streamlines 

pass between the circles means this method cannot be used directly to represent non-

circular obstacles.  From a purely mathematical standpoint, notice the second, smaller 

undefined region in the upper circle.  Recall from Equation (2.18) that the potentials of 
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points exterior to the circle are transformed to be interior to the circle for the conjugate 

analytic function.  Thus, the undefined area around the doublet in the first obstacle is 

reflected in the second obstacle. 

 
Figure 3.5 Two vertical, touching circles in uniform flow calculated using the Circle 

Theorem method 

To further explore the effects of many circular obstacles together, five circles are 

placed vertically to form a wall in Figure 3.6.  As expected, the last, uppermost, circle 

placed exactly matches the streamlines.  All the other circles are distorted from the 

desired circle allowing streamlines to pass through the wall.  The only streamlines that 

completely avoid the wall are outside the extreme upper and lower separatrices.  It is 



www.manaraa.com

 

42 

interesting that the distortion does not vary much with distance from the last obstacle 

added.  Because the disturbance created from adding a circular obstacle decays with 

distance from the circle, effectively adding a circle only affects its immediate neighbors.  

Therefore, in the scenario of adding circles from the bottom up, a circle distorts its lower 

neighbor and is distorted by its upper neighbor. 

 
Figure 3.6 Five vertical, touching circles in uniform flow calculated using the Circle 

Theorem method 

When inserting a series of circles into a generic existing flow, there is no guarantee 

that the series will be perpendicular to the flow direction.  Therefore, the same tests are 

performed with both the flow and the circle locations lying horizontal.  As before, the 
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first scenario is with the circles spaced apart (Figure 3.7).  The right circle is added last 

and so exactly matches a streamline as expected.  However, unlike the perpendicular 

flow, both circles are completely contained within the separatrices; thus, both circles 

would be avoided. 

 
Figure 3.7 Two horizontal, separated circles in uniform flow calculated using the Circle 

Theorem method 

As before, the distortion becomes more apparent when the obstacles touch (Figure 

3.8).  However, unlike the vertical orientation (Figure 3.5), the distorted streamlines do 

not penetrate the first circle; instead, the separatrices merge.  Note that the closest two 

stagnation points that originally lay on the centerline of the flow have shifted onto the 

second circle.  Overall, the streamlines produce a path such that the first circle is still 

completely avoided. 
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Figure 3.8 Two horizontal, touching circles in uniform flow calculated using the Circle 

Theorem method 

When a series of five circles are joined to form a wall (Figure 3.9), the same merging 

phenomenon is observed.  The stagnation points shift to the last added circle or form on 

the interior joints of the circles.  This in effect creates a super obstacle that is defined by 

the streamlines intersecting the leading, leftmost, stagnation point and continues until 

they intersect the trailing circle where they then follow that circle.  All of the inserted 

circles are contained within this super obstacle.  The CT method therefore does form an 

effective wall obstacle in line with the flow. 
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Figure 3.9 Five horizontal, touching circles in uniform flow calculated using the Circle 

Theorem method 

The fact that the behavior is drastically different when the circle formation is parallel 

or perpendicular to the existing flow presents a problem.  When used for path planning, 

the overall obstacle shape must represent a physical object, and the potential field flow 

will not necessarily be in any particular orientation with respect to that physical object 

due to the goal location and the starting position of the vehicle.  Therefore, a method is 

needed that works regardless of the orientation of the existing flow. 

3.1.3 Flow Velocity Average Method 

Waydo and Murray proposed a method to add multiple circular obstacles to a 

potential field without distorting the separatrix streamlines of any of the obstacles 

[Waydo 2003], the Flow Velocity Average (FVA) method.  This method calculates the 

potential field created by inserting the individual circles into the unmodified flow using 

  
2

obs,

obs,

j

j u u j

j

a
F F z F z

z z

 
     

 (3.6) 
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This is effectively Equation (2.18) with two additions.  The modified potential, Fj, is 

saved for each individual circle, j.  Additionally, the circle is centered at a generic 

location in the field, zobs,j.  From this potential, the velocity vector field for each obstacle 

potential, (VE,j, VN,j), is calculated using Equation (2.6) Once a disturbed potential is 

calculated for each of the circles, a weighting factor, , is generated based on the distance 

to each circle edge, d: 

 k
j

k j j k

d

d d







  (3.7) 

For a given circle, this weighting is one at the circle edge and zero at all other circle 

edges.  The total velocity vector field is the sum of the weighted individual fields 

 , ,,E j E j N j N j

j j

V V V V     (3.8) 

Note that the individual potential fields, weighting factors, and velocity vector fields are 

calculated over the entire solution area.  Additionally, since each individual circle is 

added to the unmodified flow, the order of addition does not matter. 

The intent of this method is to accurately represent multiple separate circular 

obstacles, rather than to allow circles to touch and form larger obstacles.  However, the 

weighting factor can be modified to allow for touching obstacles by setting the weight to 

the inverse of the number of touching circles, 
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To evaluate this method the same series of tests from Section 3.1.2 are performed.  

The first test, shown in Figure 3.10, is two vertically separated circles.  The most obvious 

difference with the CT method is that no streamlines are visible inside the circles.  

Because the output of this method is a velocity vector field, an explicit stream function 

does not exist.  Instead, individual streamlines are calculated by simulating the fluid flow 

from distinct starting locations.  For traditional potential field control, an explicit stream 

function is not required as the control effort is calculated exclusively from the potential 

field gradient, i.e. the velocity vector field.  However, for the vehicle navigation 

controller presented in Chapter 4, a stream function is necessary.  To use this controller a 

technique of generating a stream function from a gradient field would need to be 

employed.  Section 3.2.2 points to some possible techniques to calculate the stream 

function.  The main reason for the FVA method is to generate multiple circular obstacles 

with exact streamline edges.  If the edges are streamlines both circles are completely 

avoided.  Analytically, this is due to the weighting function, which prevents the 

disturbance potentials from other obstacles from affecting the potential at a circle edge. 
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Figure 3.10 Two vertical, separated circles in uniform flow calculated using the Flow 

Velocity Average method 

As seen in Figure 3.11, a problem still exists when the circles touch.  In particular, all 

the streamlines between lines intersecting the separatrix stagnation points pass between 

the circles. 
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Figure 3.11 Two vertical, touching circles in uniform flow calculated using the Flow 

Velocity Average method 

As would be expected, when five obstacles are lined together (Figure 3.12) 

streamlines pass between each of the circles.  Therefore, the FVA method does not 

produce an effective wall obstacle. 
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Figure 3.12 Five vertical, touching circles in uniform flow calculated using the Flow 

Velocity Average method 

For the series of tests with flow parallel to the obstacle orientation (Figures 3.13-

3.15), the results are similar to the CT method.  The main difference is that now all circle 

edges are streamlines.  As with the CT method, the FVA method generates streamlines 

that allow a vehicle to avoid all the obstacles.  However, when multiple circles are 

touching the separatrices defining the super obstacle exactly match the intended circular 

shape. 
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Figure 3.13 Two horizontal, separated circles in uniform flow calculated using the Flow 

Velocity Average method 

 
Figure 3.14 Two horizontal, touching circles in uniform flow calculated using the Flow 

Velocity Average method 
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Figure 3.15 Five horizontal, touching circles in uniform flow calculated using the Flow 

Velocity Average method 

The FVA method does perform exactly as it is designed, i.e. the edges of each of the 

circular obstacles are streamlines.  However, it is not intended for touching circles, in 

which case the FVA method breaks down.  In particular, streamlines still pass between 

the circles, although unlike the CT method, the circle boundaries are not distorted.  

Additionally, the output of the method is a velocity vector field, not a complex potential 

function.  To utilize this method a stream function would need to be computed from the 

velocity field.  Overall, the FVA method is not effective for creating generic shaped 

obstacles for vehicle path control. 

3.1.4 Flow Potential Average 

To address the issue of an explicit stream function not being calculated, a new Flow 

Potential Average (FPA) method is developed that directly averages the complex 

potential instead of the velocity vector [Daily 2008].  Using the same individual obstacles 

potentials given in Equation (3.6), the overall complex potential is a weighted average of 

the individual potentials, 
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 j j

j

F F  (3.10) 

The same weighting function given in Equation (3.9), is used.  The test case of two 

vertically separated circles is shown in Figure 3.16.  Several features stand out in the FPA 

method that are not present in the previous methods.  First, like the FVA method, the 

circle edge is a streamline.  However, unlike the FVA method, even if the original 

circular obstacles are separated, a larger super obstacle is formed.  This is exhibited by 

the streamlines intersecting the two stagnation points on the circular obstacles touching at 

two additional stagnation points.  Both circles would therefore be avoided by the path 

planner and even more, no streamlines pass between the obstacles.  As Equation (2.20) 

states, the stream function on a circle edge is zero.  Therefore, the super obstacle 

separatrices are formed where the weighted average of the two (or more) stream 

functions cancel out.  This is promising for creating generic shaped obstacles. 
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Figure 3.16 Two vertical, separated circles in uniform flow calculated using the Flow 

Potential Average method 

Another feature of the FPA method is that both the streamlines and equipotential lines 

exist without being numerically integrated.  As is shown in Figure 3.16, these contours 

are not always perpendicular.  This implies the averaged complex potential is not a 

harmonic function.  Other than demonstrating that the flow does not satisfy the Laplace 

equation, the equipotential lines are not used in this method.  As with the other methods, 

the vehicle follows the streamlines.  However, the velocity vector field must be 

calculated from the stream function using Equation (2.9), instead of from the velocity 

potential. 
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Because the weighting function varies over the solution grid, the averaged complex 

potential is not a superpositioning of individual potentials and thus is not guaranteed to 

satisfy the Laplace equation.  An important extension of this fact is that the potential is 

not necessarily minima free.  In particular, as seen in Figure 3.16, two vortices exist 

inside the super obstacle, the closed contour streamlines.  These represent a local minima 

and maxima in the stream function.  For this scenario, the extrema are contained within 

the super obstacle and therefore would not affect the vehicle.  Additionally, the 

equilibrium points at the extrema are conservative as they are centers rather than focuses.  

Therefore, all the streamlines around the extrema form closed contours until a separatrix 

is encountered, i.e. a vehicle following a streamline far from the extrema should not 

encounter the extrema without shifting streamlines.  However, neither of these features of 

the extrema (contained in the super obstacle and conservative) is necessarily true for all 

scenarios.  Therefore, in certain situations problems may arise where the vehicle is 

attracted to a local extremum. 

The next test is the vertically oriented, touching circles shown in Figure 3.17.  As 

expected, both circles are entirely avoided and a super obstacle is formed that is slightly 

larger than the original circles. 
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Figure 3.17 Two vertical, touching circles in uniform flow calculated using the Flow 

Potential Average method 

The result becomes more interesting when five circles are added (Figure 3.18).  While 

all circles are avoided, the streamlines near the circles are not as smooth as before.  The 

super obstacle formed where the stream function is zero is not a smooth joining of the 

individual circles.  In particular, protrusions are formed off the second and fourth circles.  

Additionally, stagnation points (and the corresponding separatrices and extrema) appear 

outside of the super obstacle that is formed.  Therefore, streamlines tightly following the 

super obstacle edge have a very convoluted path.  However, only streamlines that 

approach near the center of the super obstacle wall follow its contour that closely.  Most 
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streamlines do smoothly avoid the obstacle.  The phenomenon of the streamlines 

becoming convoluted is present in most scenarios using this method when the obstacle is 

created from a large number of circles. 

 
Figure 3.18 Five vertical, touching circles in uniform flow calculated using the Flow 

Potential Average method 

For the two obstacle horizontal tests shown in Figures 3.19 and 3.20, the potential is 

much like the average velocity method.  The potential field has streamlines that avoid the 

individual circular obstacles, but no larger super obstacle is formed. 



www.manaraa.com

 

58 

 
Figure 3.19 Two horizontal, separated circles in uniform flow calculated using the Flow 

Potential Average method 

 
Figure 3.20 Two horizontal, touching circles in uniform flow calculated using the Flow 

Potential Average method 
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However, the scenario consisting of five touching circles in line with the flow (Figure 

3.21) exhibits slightly different behavior.  A super obstacle consisting only of the five 

circles is formed, but away from the super obstacle, the potential field does not smoothly 

revert to the underlying uniform flow.  In particular, the streamlines initially approach the 

obstacle, and then a hump exists near the center of the super obstacle.  The flow being 

disturbed far from the obstacle is another undesirable feature of the average potential 

method when large numbers of circles are used to form the obstacle.  In this test scenario, 

the disturbance would cause a vehicle following the streamlines to initially approach the 

obstacle before needlessly veering away from it. 

 
Figure 3.21 Five horizontal, touching circles in uniform flow calculated using the Flow 

Potential Average method 

As with the previous methods, the flow characteristics are different if the circles are 

oriented perpendicular to or in line with the underlying flow.  Specifically for the FPA 

method, when the circles are perpendicular to the flow, shown previously in Figure 3.16, 
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two streamlines join the two circles and local extrema exist in the region formed by the 

two streamlines.  However, if the circles are oriented in line with the flow only one 

streamline joins them and no local extrema exist (other than the doublets which are 

guaranteed to be inside the circular obstacle and so are acceptable).  The transition 

between the inline and perpendicular behaviors is critical because the local extrema are 

dangerous to a vehicle path planner unless they are contained within a super obstacle. 

The bifurcation the streamlines experience as the obstacle orientation shifts from 

perpendicular (0 deg) to in line (90 deg) with the underlying flow is shown in Figure 

3.22.  The most precise method of analyzing this flow is as a phase portrait in north, east 

space.  For each of the orientations, two saddle points exist on each of the circular 

obstacles.  At 0 deg two additional saddle points exist between the circles.  A single 

separatrix joins all the saddle points and two centers exist inside the region defined by the 

separatrix.  As soon as the orientation leaves perpendicular to the flow, shown at 10 deg, 

the single separatrix breaks into three distinct streamlines: one joining the two circles and 

two others intersecting the off-circle saddle points which still exist.  The centers also still 

exist in regions defined by the two off-circle separatrices.  As the angle continues to 

increase, each center/off-circle saddle point pair begins to merge until the singular points 

cease to exist at 15 deg.  Increasing the angle further at 45 deg, smoothes the flow until 

the obstacles are in line with the underlying flow at 90 deg. 
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Figure 3.22 Flow Potential Average method, vertical/horizontal obstacle transition 
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The inline/perpendicular transitional behavior can be problematical when using this 

method for path planning.  Because the underlying flow is not uniform, it is not easy to 

define a flow direction much less guarantee its orientation relative to a real world 

obstacle.  Therefore, it is possible that scenarios arise such as the 10 deg example where 

the path taken by the streamlines (and thus the vehicle) are very convoluted.  This is quite 

undesirable behavior for vehicle path planning.  On the positive side, the flow in this test 

is conservative.  The singular points are either saddles or centers as opposed to nodes or 

focuses.  Therefore, no local extrema are encountered outside of closed regions formed 

by separatrices. 

Although the FPA method can produce some undesirable behavior particularly when 

a large number of circles are used to form an obstacle, it does meet the basic criteria for 

obstacle avoidance.  An obstacle can be approximated by a set of circles enclosing it and 

that set of circles will be avoided.  To expand on this concept, a series of circles are used 

to determine the best representation of a square obstacle.  First, four touching circles form 

the square (Figure 3.23).  In this case, the potential field is well behaved.  The only area 

in the super obstacle but outside the original circles is at the leading and trailing edges.  

This actually helps the path planner since it would prevent abrupt course changes in the 

vehicle if the streamlines were to approach the leading edge intersection of the two 

circles.  A downside of this representation is that at the top and bottom edges of the 

obstacle, the streamlines do not form a straight line; they bend toward the center of the 

obstacle.  This means that to avoid a square, the circles need to extend well beyond the 

edge of the square. 
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Figure 3.23 Square obstacle formed of four touching circles calculated using the Flow 

Potential Average method 

A possible solution to the circles extending beyond the desired square is to use more 

circles to approximate the square.  However, as is demonstrated in Figure 3.24, this 

representation has significant problems.  There are many extraneous features outside the 

designed circles such as the two additional saddle points on both the leading and trailing 

edge.  However, the major problem is the shape of the streamlines above and below the 

obstacle.  A large portion of the flow approaching the obstacle initially is drawn towards 

it unnecessarily.  Although this representation does generate paths that avoid the obstacle, 

they are not elegant paths. 
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Figure 3.24 Square obstacle formed of eight touching circles calculated using the Flow 

Potential Average method 

Recall that with the FPA method the circles are always joined by a streamline.  

Because of this, the circles do not need to be touching to form the obstacle.  A square 

obstacle created using four separated circles is shown in Figure 3.25.  Because only four 

circles are used the flow is smooth, but the shape of the connecting streamlines cannot be 

easily predicted so there is no guarantee that a path is generated such that a vehicle would 

avoid the desired obstacle. 
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Figure 3.25 Square obstacle formed of four separated circles calculated using the Flow 

Potential Average method 

Overall, with the new FPA method it is better to use as few circles as possible to 

represent obstacles.  Additionally, to guarantee the shape of the obstacle, the circles 

usually should touch.  One useful obstacle that is created with separated circles is a wall.  

A small circle is placed on each edge of the wall and the connecting streamline forms the 

wall.  Within these limitations, it is possible to generate vehicle paths using the FPA 

method.  The scheme is as follows.  



www.manaraa.com

 

66 

Create a potential field containing only start and goal locations as sources and 

sinks respectively using Equation (3.1).  The discontinuities should be rotated to 

point away from the line segment between the start and goal.  This potential 

forms the new basis potential. 

For each obstacle present in the world map: 

If the obstacle is approximated as a circle: 

Use the Circle Theorem to add the circular obstacle to the basis potential 

using Equation (2.18). 

If the obstacle is approximated as a wall: 

Use the FPA method to add a small circle to the basis potential at each end 

of the wall with Equations (3.6) and (3.10). 

If the obstacle is approximated by a combination of circles: 

Use the FPA method to add each of the circles to the basis potential, 

Equations (3.6) and (3.10). 

The potential resulting after the obstacle is added becomes the new basis 

potential. 

Once all obstacles are added to the potential field, the overall potential field is 

complete. 

The new FPA method has the same limitation of the original Circle Theorem, i.e. 

adding an additional obstacle modifies the edges of any previously added obstacles.  

However, as long as the obstacles are significantly separated relative to their size the 

distortion is minimal.  A sample map generated using this method is shown in Figure 

3.26.  It contains a wall, a circular obstacle, and a square obstacle approximated by four 

circles.  The streamlines from start to goal smoothly avoid each of the obstacles. 
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Figure 3.26 Averaging stream function, sample map 

While this map is successful, it is difficult to predict when some of the less attractive 

aspects of this method will appear in the generated potential field.  The method meets the 

basic requirements, but has significant secondary drawbacks that may be worth 

investigating in future work. 

Many other techniques for representing obstacles also exist.  For instance, Needham 

expands the concept of the Circle Theorem with the “method of images” for inserting a 

generic shape obstacle into a flow [Needham 1997].  The idea centers around making the 

obstacle edge a streamline.  By reflecting the undisturbed flow about the obstacle edge, 

that edge becomes a streamline.  For a circular obstacle, this reflection is the conjugate 

analytic function with the argument given in Equation (2.18).  Additionally, conformal 

mapping techniques allow some obstacle shapes to be mapped to a circle along with the 
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resulting fluid flow [Currie 1993, Milne-Thomson 1996, Rimon 1992].  This is a 

common way to study basic flow around wings.  These techniques should be studied in 

the future to determine their applicability to path planning. 

3.2 Numerical Solutions 

As Section 2.1.2 described, numerical solutions are an alternative method for 

calculating a potential field.  The main down side of the numerical method is that 

typically only the velocity potential is calculated.  The stream function must therefore be 

determined from the velocity potential.  For fluid dynamicists this is acceptable since the 

objective is the velocity vector field and corresponding streamlines, thus the stream 

function is not necessary.  For this work, however, an explicit stream function is required 

to control the vehicle to the goal.  The benefit of numeric solutions is that any shape 

obstacle can be represented.  This feature makes numerical solutions attractive since 

generic shaped obstacle representation is the main drawback of analytical solutions.  The 

way any feature (such as a start, goal, or obstacle) is modeled in numerical potential 

fields is through boundary conditions.  The outer edge of the solution area is treated as an 

obstacle creating a finite area the potential is defined within, or that the vehicle can drive 

in.  Section 2.1.2 mentioned two common types of numerical boundary conditions for 

potential functions, Dirichlet and Neumann, which are examined here. 

3.2.1 Dirichlet Boundary Condition 

Dirichlet boundary conditions involve setting the velocity potential to a specific 

value.  This is the technique to model start and goal locations.  The start is set to a low 

potential and the goal high.  This boundary condition can also be used to model obstacles 
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by making the obstacle potential higher than its surroundings.  This concept is appealing 

because it closely models Khatib’s original potential field idea [Khatib 1985].  However, 

Dirichlet obstacles have several drawbacks described below. 

The first test of the Dirichlet boundary condition (DBC) method is a potential field 

created by a low potential start in the southeast corner and a high potential goal in the 

northwest as shown in Figure 3.27.  The start and goal potentials are negative and 

positive one respectively (although as with the analytical solutions the magnitude is not 

critical since the gradient direction is the important aspect).  The world border (not shown 

on the plot) uses Dirichlet boundary conditions with zero potential and no obstacles are 

present.  In order to avoid boundary condition conflicts when a start or goal lies on the 

border an extra row or column of points are added to each edge of the solution area.  This 

extra set of points becomes the world border for the numerical solver.  This technique of 

increasing the grid size by one in each direction is used on each of the numerical 

boundary conditions methods described in this dissertation. 
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Figure 3.27 Start and goal potential obstacle potential field, using Dirichlet boundary 

conditions 

As is shown in Figure 3.27, the velocity potential is very flat meaning that the effects 

of the start and goal do not noticeably extend very far into the field.  The equipotential 

contour lines are shown logarithmically spaced to show the slight curvature near the 

center of the field.  Recall that the stream function is not calculated.  Instead, the 

streamlines are generated by numerically integrating the velocity vector field.  Therefore, 
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the flat potential may cause numerical problems when calculating the velocity vector.  

Because the gradient is so small, slight errors in the gradient calculation can cause large 

changes in the direction of the velocity vector. 

Beyond the numerical problems, several structural problems exist with the DBC 

method.  As with the analytical techniques, the flow is characterized by its saddle points 

and corresponding separatrices.  Although they are not obvious, there are two saddle 

points at the northeast and southwest corners of the solution area.  These streamlines do 

not converge to a single point on the plot because of the extra row of grid points.  

Streamlines contained within the separatrices intersecting these saddle points reach both 

the start and goal, resulting in a vehicle that would drive where desired.  However, 

streamlines outside this area go outside the solution grid. 

Also, note that the streamlines shown all converge to virtually a single line 

approaching the start and goal.  Many streamlines converging to a nearly single line is a 

common feature when dealing with Dirichlet boundary conditions.  In this case, it means 

that even when a vehicle is following one of the streamlines in the area that intersects the 

goal, near the start it can only drive in one direction.  For this scenario, the problem could 

likely be reduced by linearly varying the border potential near the start and goal to reduce 

the gradient between the start/goal and the border.  It is also possible to add more than 

one extra row of solution points before the border boundary condition is applied.  Either 

solution should widen the possible departure angles near the start.  However, solutions to 

keep streamlines from merging are not as obvious for other scenarios. 

When adding an obstacle, the potential value of the obstacle is an important design 

parameter.  Figure 3.28 represents an obstacle with zero potential, i.e. equal to the border.  
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The overall flow around the obstacle is similar to the no obstacle case shown previously 

in Figure 3.27.  This is not surprising since the obstacle potential is so close to the 

surrounding potential.  Streamlines outside the area defined by the separatrices 

intersecting the border saddle points ( ) still do not intersect both the start and goal.  The 

critical difference between the flows is defined by the separatrices intersecting the saddle 

points in the northeast and southwest quadrants of the obstacle.  All streamlines inside the 

area defined by these streamlines ( ) intersect the obstacle.  This leaves a limited area in 

which the vehicle can avoid the obstacle but still reach the goal.  Effectively a super 

obstacle is created reaching from the start to the goal and containing the desired obstacle.  

However, a much larger section of the solution area is also contained completely dividing 

the solution area. 

 
Figure 3.28 Start, goal, and zero potential obstacle potential obstacle potential field, using 

Dirichlet boundary conditions 
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Increasing the value of the potential function at the obstacle does not help the 

situation.  A potential field with an obstacle potential of 0.0002 is shown in Figure 3.29.  

Notice that the obstacle saddle points move along the obstacle edge toward the start while 

the border saddle points move toward the goal.  However, the same three regions exist: 

intersecting the border and either the start or goal ( ), intersecting the obstacle and either 

the start or goal ( ), and intersecting both the start and goal ( ).  If the obstacle potential 

is increased much further, at least one streamline will intersect both the obstacle and the 

border.  This means that no streamlines intersect both the start and goal.  Therefore, the 

allowable range of obstacle potentials is quite small. 

 
Figure 3.29 Start, goal, and positive potential obstacle potential field, using Dirichlet 

boundary conditions 
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Expanding the concept to multiple obstacles (Figure 3.30) the problems become even 

more apparent.  As with each of the other flows, the separatrices intersecting these 

singular points along with singular points on the border define the regions that will 

intersect an obstacle, areas that intersect the border, and areas that intersect the start and 

goal.  However, more sub-regions exist for the flow: avoiding one obstacle but 

intersecting another, etc.  Note that where these sub-regions meet one often collapses to 

virtually a single line, leading to very small allowable approach and departure angles 

to/from the goal and start.  Because these are caused by the interaction of the obstacles 

and border, there is no easy solution to this problem. 

 
Figure 3.30 Start, goal, and three obstacles potential field, using Dirichlet boundary 

conditions 
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In the above example, each obstacle has its potential set to zero.  Note how the saddle 

points are in different locations on each of the obstacles: on the northern obstacle they are 

drifting toward the leading edge of the obstacle, on the western obstacle they have 

effectively combined into a single singular point, and on the eastern obstacle the saddle 

points have combined and separated from the obstacle.  Ideally, these saddle points 

would be placed to more closely match the obstacle shape by varying the obstacle 

potential.  However, there is no simple method to determine the ideal potential for each 

individual obstacle. 

One possibility for simultaneously removing the need to choose individual obstacle 

potentials and having some streamlines avoid one obstacle only to intersect another is to 

remove the start location from the potential field as shown in Figure 3.31.  In this case, 

the obstacles and border are the lowest potential at zero, while the goal is still one.  All 

streamlines begin at either an obstacle or the border and all intersect the goal.  Effectively 

the border and obstacles are the source.  Because the obstacles are at the lowest potential, 

no flow approaches them.  The downside of this method as compared to the other 

Dirichlet methods is that only one streamline connects a given point in the field and the 

goal.  For example, if the southeast corner is the start location of the vehicle, only one 

streamline passes through that point.  With the previous methods presented in this 

dissertation all streamlines pass through the start point, so many possible paths exist. 
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Figure 3.31 Goal and three obstacles potential field, using Dirichlet boundary conditions 

Using Dirichlet boundary conditions to represent obstacles can satisfy the basic goal 

of approaching a goal location and avoiding all obstacles.  However, as seen, the 

resulting potential fields often have undesirable characteristics.  The super obstacles 

generated are often much larger than the true obstacle and like using sources in analytical 

flows (Section 3.1.1), they often extend to the start, goal, or both.  The allowable driving 

area also often collapses to a single line through the obstacles.  While these problems 

may be reduced (by modifying the border potential, individually optimizing the obstacle 

potentials, or removing the start location) a larger structural problem still exists.  The 

potential created is virtually flat.  Because the border is a uniform potential, most of the 

potential field is also near that value.  This makes numerically calculating the gradient to 

produce streamline paths problematical. 
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3.2.2 Neumann Boundary Condition 

The other boundary condition useful for path planning is the Neumann boundary 

condition.  With this boundary condition, the derivative of the potential function is 

constrained instead of the potential value itself.  In particular, to model fluid flow along 

surfaces the normal velocity is set to zero.  The main downside of this method is the time 

to compute a solution due to the boundary and obstacle potential depending on the 

surrounding potential. 

An example of the Neumann boundary condition (NBC) method for a map with a 

start and goal location but no obstacles is shown in Figure 3.32.  The start and goal 

locations are represented with Dirichlet conditions at negative and positive one 

respectively, while the border uses a Neumann condition.  Compared with the DBC 

method (Figure 3.27), several features are immediately apparent.  The potential is much 

smoother in varying from the start to the goal, i.e. it does not flatten away from the start 

and goal.  This makes calculating the gradient more robust to numerical error.  Like the 

DBC method, the streamlines are numerically calculated by integrating the velocity 

vector field.  However, in this case all the streamlines stay in the solution area, 

intersecting both the start and goal.  This potential is much more like the corresponding 

analytical solution shown in Figure 3.1, except for the fact that the solution is over a 

limited area instead of a global space. 
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Figure 3.32 Start and goal potential field, using Neumann boundary conditions 

Other benefits of the NBC method become apparent when an obstacle is added to the 

flow as shown in Figure 3.33.  The area of the solution that the streamlines avoid exactly 

matches the obstacle shape.  In addition, all streamlines still intersect both the start and 

goal.  Unlike the DBC method, no streamlines may leave the solution area. 
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Figure 3.33 Start, goal, and obstacle potential field, using Neumann boundary conditions 

The main advantages compared to analytical methods become apparent when 

multiple obstacles are in the solution area (Figure 3.34).  Each of the obstacle edges is a 

streamline.  Because the entire field is computed at once, obstacles are not distorted by 

the addition of later obstacles.  Note that the obstacles can be any shape, although they 

are circles in this example for simplicity.  As with each of the other methods, the flow is 

characterized by separatrices intersecting saddle points in the potential field.  However, 

unlike the DBC method the saddle points are always on the obstacle edge.  Also unlike 

the DBC method, where the separatrices determine what portion of the solution area 

reaches the goal, with the NBC method the separatrices simply determine which side of 

an obstacle the streamlines pass on. 
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Figure 3.34 Start, goal, and three obstacles potential field, using Neumann boundary 

conditions 

The NBC method produces the best potential field for vehicle path planning since any 

obstacle shape can be represented exactly (limited only by the discretization of the 

solution grid) without needing any other parameters from the flow and all streamlines 

intersect both the start and the goal allowing a design parameter of the best streamline to 

follow.  The limitations of the NBC method are that it is computationally expensive and 

the fact that streamlines are numerically calculated instead of contours of a stream 

function. 

There are several possible methods for calculating a stream function given a velocity 

potential.  The first method relies on the fact that the stream function is an exact 
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differential.  Recall that streamlines are parallel to the velocity vector field.  This implies 

that 
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Along with the conservation of mass requirement given previously in Equation (2.3), this 

means that the stream function is an exact differential [Rainville 1969] and can be 

calculated by 
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Notice that this is in fact the definition of the stream function, Equation (2.9).  Examining 

the north velocity equation, 
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where  f N  is the unknown integration constant function.  For each index point,  ,j k , 

in the solution grid, the north velocity integral can be numerically approximated, 
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To calculate the integration constant function, the east velocity is used, 
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The partial derivative of the north velocity integral, g, can be numerically approximated 

leaving the integration constant function to be approximated with numeric integration, 
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Finally, the stream function is given by 

 g f    (3.17) 

This method works well in theory; however, there are two main issues that must be 

resolved.  The first is that extensive numeric integration and differentiation is being 

employed on a potential field that already has some numerical errors due to the iterative 

solver.  The second is how to handle obstacles.  The potential field interior to an obstacle 

is not defined.  Technically the obstacle interior is outside the solution grid.  The numeric 

integration must therefore reset across the obstacle gap.  What value the integration 

should reset to is not known.  If the obstacles are represented by Neumann boundary 

conditions then the underlying principle is that the stream function is constant over the 

obstacle edge.  For Dirichlet boundary conditions, the solution is not known.  When these 

issues can be disregarded, i.e. when no obstacles are present in the solution area, this 

method does produce a workable stream function.  However, this would rarely be the 

case in path planning. 

Several other methods exist for determining the stream function using properties of 

analytic harmonic functions [Sarang 2007].  For instance, in early versions of Theoretical 

Hydrodynamics Milne-Thomson describes one such method [Laitone 1977].  However, 

this technique is absent in later editions of the book [Milne-Thomson 1996] and thus was 

not able to be implemented.  Many of these methods, however, require analytic solutions 

for the velocity potential.  In the potential field generation techniques used in this 

research, if an analytic solution exists then the stream function is already known.  Still 

more techniques for calculating the stream function include stream surface methods 
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[Kenwright 1992] and combining distinct streamlines into a complete stream function 

[van Wijk 1993].  For this research, however, the velocity potential is not necessary to 

produce a path planning solution.  Therefore, instead of using any of the methods 

mentioned above to calculate the velocity potential and determine the stream function 

from the velocity potential, it should be possible to develop a new method to calculate the 

stream function directly. 

3.2.3 Stream Function Boundary Condition 

As Chapter 2 mentioned, the partial differential (or difference in the discrete case) 

equation that underlies both the velocity potential and the stream function is the Laplace 

equation.  The difference between the two functions therefore lies in the boundary 

conditions.  In particular, start and goal locations, obstacles, and the world border need to 

be represented for the stream function.  To this end, a new stream function boundary 

condition (SFBC) method is developed. 

To model a start or goal location, characteristics of the analytical source or sink are 

matched.  In particular, for an analytic source streamlines all lead radially away from a 

source as in Figure 2.2.  Mathematically, the stream function at a point around a source is 

effectively the angle of that point in polar coordinates centered at the source or sink.  The 

analogous concept for the numerical boundary condition is to linearly vary the stream 

function of the points surrounding the start or goal location based on their polar angle.  

This implies that the stream function will have a discontinuity.  As with the analytical 

source, the discontinuity is designed to be oriented facing directly away from the line 

segment connecting the start and goal.  The angle of each point surrounding the start or 

goal is measured from the line segment connecting the start and goal, i.e. the line segment 
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is defined as 0 deg.  Note that because of this definition, points have a different angle 

when referenced from the start location as opposed to the goal.  However, the different 

reference frames are accounted for in the boundary condition definition.  The 

discontinuity is always at 180 deg. 

It is critical that the orientation of increasing stream function match the analytical 

model so that the velocity vector field (and thus desired heading) will not be rotated by 

180 deg.  In particular, the stream function should increase counterclockwise at the start 

and clockwise at the goal.  Since the overall magnitude of the stream function is not 

critical, 180 deg is chosen to correspond with a stream function of 1 and 180 deg 

corresponds to a stream function of 1.  This implies that the polar angle increases 

counterclockwise at the start and clockwise at the goal.  Note that the streamline leaving 

the start or approaching the goal along the line connecting the two points will have a 

stream function of zero. 

Because of the superior flow characteristics of the Neumann velocity potential 

boundary conditions, the stream function boundary conditions at the world border and 

obstacles are chosen so that the resulting flow matches the Neumann boundary condition 

flow.  Recall that for the Neumann boundary condition the normal velocity is zero.  This 

means that the stream function will be constant, i.e. the border is a streamline.  As 

described above, the stream function for points with negative polar angles measured from 

either the start or the goal have a negative stream function value.  The minimum stream 

function is 1 and should occur at the world border.  Therefore, border points with a 

negative polar angle are assigned a stream function of negative one.  Similarly, border 
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points with a positive polar angle are assigned a stream function of 1.  This is 

effectively a Dirichlet boundary condition on the stream function at the world border. 

The concept of the stream function boundary condition for start and goal locations as 

well as the world border is illustrated in Figure 3.35.  The upper plot shows the boundary 

points with assigned stream function values vs. the interior points, which are solved to 

satisfy the discrete Laplace equation from Equation (2.22) (with the forcing function, G, 

equal to zero).  The lower two plots show the assigned stream function values for the 

points immediately surrounding the start and goal as well as along the world border. 

 
Figure 3.35 Start and goal boundary values for the stream function boundary condition 
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There are two important considerations when using this method to calculate the 

stream function.  The first is that for this research the start and goal location always lie on 

the world edge (before the extra set of solution points are added as discussed in Section 

3.2.1).  This condition is not strictly necessary.  Just as the stream function discontinuity 

exists along an infinite line segment for the analytic source, the numeric boundary 

condition could be applied to the sequence of points immediately next to the 

discontinuity (positive or negative one depending on the side of the discontinuity).  

However, for path planning it is rare that the desired behavior is to drive away from the 

goal before turning towards it.  Therefore, in most situations only including points 

between the start and goal is a valid constraint for the solution grid.  The second 

restriction is that only one start and one goal exist.  There is no obvious method for 

placing the discontinuities for multiple starts or goals.  Analytically the discontinuity 

location does not affect the flow, but when determining correct border boundary 

conditions it becomes more important.  Having multiple starts or goals is not common in 

vehicle path planning.  However, one possible scenario would involve multiple robots 

starting at the same location and going to different goals; this scenario is beyond the 

scope of this research. 

The complete potential field from the newly developed SFBC method is shown in 

Figure 3.36 for the test scenario used above: start at the southeast corner, goal at the 

northwest, and no obstacles.  This figure is very similar to the Neumann boundary 

condition (Figure 3.32).  The difference is that in this case the stream function is 

calculated instead of the velocity potential.  This means that the equipotential lines are 
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numerically integrated from the velocity vector filed instead of the streamlines.  

However, for path planning the velocity potential is not needed. 

 
Figure 3.36 Start and goal potential field, using the stream function boundary condition 

When an obstacle is added to the field (Figure 3.37), the obstacle edge is a streamline 

just as with the world border.  The difference between the border and an obstacle edge is 

that the value of the stream function at the obstacle is not known a priori.  More 

specifically, one streamline will intersect the obstacle and the obstacle edge will take the 

value of that stream function contour.  To accomplish this, at each iteration of the solver 

the stream function at the obstacle edge is set to the average of the stream function values 

at the points immediately surrounding the obstacle.  When the solution converges the 

behavior of the stream function is as desired. 
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Figure 3.37 Start, goal, and obstacle potential field, using the stream function boundary 

condition 

When multiple obstacles are added to the field (Figure 3.38), the procedure is the 

same as the single obstacle.  During each iteration of the solver, the stream function at 

each individual obstacle edge is set to the average of the points immediately surrounding 

that obstacle.  It is critical that the obstacles are handled individually.  Individual 

obstacles will very rarely have the same streamline intersect them; therefore setting the 

stream function at the obstacle edge to the average of the points surrounding all of the 

obstacles is incorrect.  Note that as expected the behavior of the streamlines matches that 

of the same scenario with Neumann boundary conditions shown previously in Figure 

3.34. 
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Figure 3.38 Start, goal, and three obstacles potential field, using the stream function 

boundary condition 

The SFBC method satisfies both of the requirements for vehicle path planning: any 

shape obstacles can be modeled and an explicit stream function is calculated.  An 

additional benefit of this new method is that its calculation time is much shorter than the 

Neumann boundary condition that it mimics in behavior.  Table 3.1 shows the average 

calculation time for four solution methods: analytical Circle theorem, numerical Dirichlet 

boundary condition, numerical Neumann boundary condition, and the new numerical 

stream function boundary condition.  For each test, Matlab is used to calculate the 

potential field 30 times over a 101×101 grid and the calculation time is averaged.  The 

test is performed for both the no obstacle and three obstacle scenarios presented above.  
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Table 3.1 Potential field method calculation times 

Method 
No obstacle 

computation time (s) 

Three obstacle 

computation time (s) 

Circle theorem 0.0161 1.09 

Dirichlet BC 0.667 0.642 

Neumann BC 13.5 33.7 

Stream Function BC 2.02 4.57 

With no obstacles present, the CT method is obviously the shortest calculation time; 

the calculation is a simple analytic function.  However, when obstacles are added, the CT 

method time increases dramatically, becoming longer than the DBC method time.  This is 

most likely due to the interpolations that must be performed to add obstacles to an 

existing field.  As expected the DBC method is the fastest of the numerical techniques 

due to the boundary condition being fixed across iterations.  The calculation time is 

slightly shorter with obstacles simply because there are fewer interior points to solve in 

the solution grid.  The NBC method takes the longest to calculate because the world 

border and obstacle edge potential vary with each iteration of the solver.  The calculation 

time is so long that real time implementation may be problematical with reasonable 

computing power.  The SFBC method developed in this dissertation takes longer to 

compute than the DBC method due to the stream function on obstacle edges varying with 

solver iteration.  However, the computation time is still significantly shorter than the 

NBC method and should be feasible to implement for real time path planning 

applications. 

Overall, several analytical and numerical techniques have been examined.  A new 

analytical method has been developed which meets the requirements of avoiding all 

obstacles by combining circles to approximate generic shaped obstacles.  However, this 
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method suffers when many circles are required to match the obstacle shape.  A new 

numerical solution developed using the stream function boundary condition is the best 

technique to generate potential fields for vehicle path planning.  Unlike analytical 

methods, exact obstacle shapes can be represented.  In addition, unlike the numerical 

techniques that calculate the velocity potential, an explicit stream function is calculated.  

This stream function is integral to the vehicle steering controller presented in Chapter 4.  

Finally, the computation time is shown to be reasonable enough to allow real time 

implementation on a vehicle. 



www.manaraa.com

 

92 

4 CONTROLLER DEVELOPMENT 

After the potential field method has been developed, the next critical algorithm is the 

vehicle controller, which utilizes the potential field to move from the start to the goal.  To 

design the controller a linear vehicle model which represents the lateral error to a desired 

streamline for given steer angles is utilized.  The controller relies on both vehicle 

response measurements as well as reference states determined from the potential field.  

Section 4.1 presents the simplified model used in the steering controller.  This section 

also exposes a new issue with a vehicle becoming uncontrollable at a critical speed along 

with methods to mitigate the problem.  Section 4.2 expands the vehicle model to include 

global position states and tracking a reference circle and demonstrates the method using a 

test potential field. 

4.1 Bicycle Model Vehicle Controller 

Section 2.2 presented the vehicle model used for simulation purposes.  This model is 

simplified to the well known bicycle model [Dixon 1991] to use in controller design.  In 

addition to the assumptions made in the full vehicle model (constant speed and planar 

motion), the bicycle model has two additional assumptions.  First, the inner and outer 

tires and slip angles are assumed to be identical and second, the equations of motion 

shown in Equations (2.28) and (2.29) are linearized for small angles and a linear tire 

model.  Under these assumptions the system is described by the following model 
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This model fits the common linear state space form, 

  x Ax Bu  (4.2) 

with the state vector 
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and the input (scalar for this system) 

 u   (4.4) 

The parameters for this model are given in Table 2.1.  Note that for equation simplicity 

the cornering stiffnesses in the bicycle model are per axle whereas Table 2.1 lists them 

per tire.  Neglecting weight transfer, the axle cornering stiffness is twice the tire 

cornering stiffness (assuming two tires per axle). 

The bicycle model is second order and, as with the nonlinear model, the 

characteristics change with vehicle speed.  The magnitude and damping ratio of the 

bicycle model poles are shown in Figure 4.1.  A transition speed exists where the models 

shifts from over-damped to under-damped.  This speed is defined as 
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  

   





 (4.5) 

Note that the transition speed may be complex implying the model is over-damped for all 

speeds.  For the parameters used in this research, the transition speed is 8.5 m/s (19 mph).  
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In Figure 4.1, this is the speed at which the magnitudes of the two poles converge and the 

damping ratio becomes less than one. 

 
Figure 4.1 Bicycle model pole characteristics 

4.1.1 Uncontrollable Speed 

The magnitudes of the poles and zeros for the range of speed where the poles are real 

are shown in Figure 4.2.  Because the magnitude of the poles and zeros are all close 

together, the lower plot shows the magnitude relative to the slower pole.  The significant 

aspect of this plot is that a critical speed (Vcrit) occurs at 5.83 m/s (13 mph) where one of 

the poles cancels the zeros leaving a first order model.  This is similar to the pole/zero 

cancellation that occurs in neutral steer vehicles [Dixon 1991].  However, in this case the 

cancellation is a function of speed as well as the vehicle parameters.  Note that this 
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critical speed is not the same as the speed at which the bicycle model may become 

unstable (also known as the critical speed) [Gillespie 1992]. 

 
Figure 4.2 Bicycle model real poles and zeros 

The reason this pole/zero cancellation is important is that at the critical speed the 

model becomes uncontrollable causing problems in designing the control gains.  If a 

system is controllable then control efforts exist to transition the system between any two 

states in finite time [Bay 1999, Friedland 2005].  In terms of system performance, if a 

system is controllable it is possible to design a state feedback controller such that the 
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closed-loop system eigenvalues can be chosen freely.  A system is controllable if the 

controllability matrix is full rank.  The controllability matrix for the bicycle model is 

  
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The critical speed is calculated by determining the speed at which the determinate of the 

controllability matrix is zero: 

 

  

0
critV V
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R zC a b mab I

ma
V














CB

 (4.7) 

There are two interesting features about this equation.  First, the critical speed will not 

exist if the vertical moment of inertia is large enough compared to the mass and center of 

gravity location.  Specifically, if 

 zI mab  (4.8) 

then the critical speed is imaginary, i.e. does not exist.  This relationship is interesting 

because for passenger vehicles the yaw moment of inertia is often approximated as 

[Garrott 1988] 

 zI mab  (4.9) 

This means that the critical speed is often zero or at least very slow.  However, if this 

relationship does not hold, as with the Corvette, then the critical speed should be taken 

into consideration when designing a vehicle controller. 
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Another interesting point is that the critical speed depends on all vehicle parameters 

except the front axle cornering stiffness.  This by itself is not significant, but recall that 

the bicycle model also has a transition speed from over-damped to under-damped which 

is given in Equation (4.5).  For the pole /zero cancellation to occur, the model must be 

over-damped because it is not possible to cancel half of a complex pair.  Therefore, the 

critical speed must be below the transition speed. 

For the same critical speed, it is possible to have multiple transition speeds by varying 

the front axle cornering stiffness.  The relationship between the transition and critical 

speeds is shown in Figure 4.3.  Notice that the minimum transition speed is the critical 

speed.  Initially there does not appear to be much in common between the critical and 

transition speeds, Equations (4.9) and (4.5) respectively.  However, when the derivative 

of the transition speed with respect to the front cornering stiffness is set to zero, the 

analytical minimum transition speed is the critical speed: 
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

 







 (4.10) 

As described above, it is necessary for the minimum transition speed to be at least the 

critical speed.  However, it is interesting that the minimum transition speed is the same as 

the critical speed, particularly because the transition speed depends only on the state 

matrix, A, while the critical speed depends on the input matrix, B, as well as the state 

matrix.  Although the relationship between the transition speed and critical speed is not 

necessary to account for the uncontrollability, it is remarkable that mathematically the 
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two seemingly unrelated speeds are linked such that the pole/zero cancellation is 

possible. 

 
Figure 4.3 Bicycle model real/complex transition speed 

An alternative method to study the controllability of the bicycle model is to study the 

controllability gramian [Antoulas 2004, Bay 1999, Friedland 2005].  The infinite 

controllability gramian is defined as 

 
TT

0

e e d  


 
A AG BB  (4.11) 

It also satisfies the Lyapunov equation: 

 
T T 0  AG GA BB  (4.12) 

In order for the system to be controllable, the controllability gramian must be non-

singular, which corresponds to the controllability matrix not being full rank.  However, 

the controllability gramian provides more insight than the controllability matrix because 

along with a binary controllable/uncontrollable result, the controllability gramian can be 
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used to calculate the minimum energy necessary to transition between two states, i.e. for 

the vehicle to move from one yaw rate and side slip to another.  The minimum energy 

required to transition from the null state to a given state, xd, is defined as 

 T 1

min d dE  x G x  (4.13) 

Notice that the control input to transition between the states is not needed to compute this 

energy.  The norm of the inverse of the controllability gramian for the bicycle model is 

shown in Figure 4.4.  As the speed nears the critical speed, the norm increases 

dramatically, implying the energy necessary to transition to a desired state also increases 

correspondingly.  The uncontrollable problem is not isolated to simply the critical speed.  

Even in the region around the critical speed, the energy required to control the vehicle is 

not physically feasible. 

 
Figure 4.4 Norm of inverse of bicycle model controllability gramian (Vcrit = 5.8 m/s) 
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4.1.2 Constant Closed-Loop Pole Controller 

State feedback is used to demonstrate the effects of the controllability on the control 

design.  State feedback controllers have the form 

  u Kx  (4.14) 

For this system the control gain matrix, K, is made up of the sideslip and yaw rate gains: 

 rK K
   K  (4.15) 

For this example, these gains are chosen so that the closed-loop system 

   x A BK x  (4.16) 

has constant closed-loop poles at a frequency, n,des, and damping ratio, des, of 5 Hz and 

0.707 respectively, i.e. 

 2 2

2 2 , ,2 des n des n dess s s       I A BK  (4.17) 

The resulting control gains are shown in Figure 4.5.  Note that at the critical velocity the 

gains are undefined.  More importantly, the gains grow very large in the region around 

the critical velocity.  The large gains correspond to the increased energy necessary to 

transition between states. 
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Figure 4.5 Bicycle model control gains: constant closed-loop poles (Vcrit = 5.8 m/s) 

To demonstrate the response when these control gains are used, the system is 

simulated with a linearly varying speed.  In this simulation a reference yaw rate, rref, of 

10 deg/s is used.  From the reference yaw rate, a reference sideslip, ref, and steer angle, 

ref, are calculated using the DC gains of the system: 

 1
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r
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r
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 



A B  (4.18) 

These correspond to the steady state values necessary to maintain the desired yaw rate.  

The controlled steer angle then becomes 

 
ref

ref r

ref

r r
K K 

 

 
       

 (4.19) 
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The motivation behind the feed forward formulation for the controller is explained in 

more detail in Section 4.2.  The vehicle plant for this simulation is the bicycle model 

instead of the nonlinear model in order to eliminate any errors not due to the control 

gains.  The sample rate of the simulation is 100 Hz. 

As the response shows in Figure 4.6, when the vehicle nears the critical speed (5.83 

m/s) it begins to become unstable.  The only reason the response returns to the desired 

behavior is that the speed increases past the critical velocity.  One interesting feature of 

this test is that because the simulation is calculated at discrete time steps, the speed (and 

thus gain calculation) does not occur at exactly the critical velocity.  Because of this, the 

closed-loop response should still match the desired response.  Specifically, the difference 

in the desired and actual closed-loop poles is never larger than 10
5

. 
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Figure 4.6 Bicycle model response: constant closed-loop poles, varying speed 

The reason for the discrepancy between the actual and desired response is that the 

system parameters vary with time.  Recall that time varying systems are not guaranteed to 

be stable even if the poles have negative real parts at every time step [Slotine 1991].  This 

fact is true for every vehicle controller designed from the bicycle model.  However, it has 

never been adequately studied for vehicle systems.  For this system when the control 

gains are reasonable, the varying speed does not have a major effect.  However, when the 

gains become large (and the variation between one time step and the next is 

correspondingly large) the varying speed causes the system to behave erratically.  To 
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justify this conclusion, a similar simulation is shown in Figure 4.7.  The difference is that 

in this simulation the speed is held constant at 5.82 m/s, very close to the critical velocity.  

In this simulation, the response is as expected even though the control gains are very 

large.  However, the constant speed assumption is not invalidated as it is in the prior 

simulation. 

 
Figure 4.7 Bicycle model response: constant closed-loop poles, constant speed 

Even when holding the speed constant there are other problems with the large control 

gains near the critical velocity.  For example, the same simulation with the addition of 

zero mean Gaussian noise to the feedback states is shown in Figure 4.8.  The standard 

deviation of the yaw rate noise is 0.05 deg/s, typical for automotive grade gyroscopes.  
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The standard deviation of the sideslip noise is 0.36 deg.  Although there is no typical 

sideslip sensor, this is the noise when using GPS and a gyroscope to estimate sideslip 

[Daily 2004].  When the speed is not near the critical velocity (left plots), the response is 

acceptable.  However, near the critical velocity the response is unacceptable (right plots).  

The large control gains aggravate the uncorrelated noise on the two states and corrupt the 

system response.  The clean (no noise) response shown previously does not have this 

undesirable behavior because the states are correlated causing the large gains to 

effectively cancel out and produce a reasonable steer angle. 

 
Figure 4.8 Bicycle model response: constant closed-loop poles, with noise 
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In general, a fixed closed-loop pole control is not acceptable even if the speed is not 

precisely at the critical velocity because the large control gains near the critical velocity 

drive the system unstable both by varying the model parameters and by exacerbating 

measurement noise. 

4.1.3 LQR Design 

In order to reduce the effects of uncontrollable speed, a better method to calculate the 

control gains is using LQR [Stengel 1994].  LQR designs the control gains to minimize 

the cost function 

  T T

0

J dt



  x Qx u Ru  (4.20) 

where Q and R are the state and input weight matrices respectively.  The control gain 

matrix is calculated as 

 1 TK R B P  (4.21) 

Where P is the solution to the algebraic Riccati equation: 

 
T 1 T   A P PA PBR B P Q 0  (4.22) 

For this example, the weights are chosen to be of one on sideslip, ten on yaw rate, and 

one on steer angle, i.e. 

 
1 0

1
0 10

R
 

  
 

Q  (4.23) 

Typically, it is more important to match the reference yaw rate than the sideslip; 

therefore, the yaw rate weight is higher.  Section 4.2 describes the actual weights used in 

the streamline controller.  The control gains resulting from these weights are shown in 
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Figure 4.9.  Note that the control gains are acceptable for all speeds, even in the vicinity 

of the critical velocity. 

 
Figure 4.9 Bicycle model control gains using LQR design (Vcrit = 5.8 m/s) 

Typically for an LQR design to be valid the system must be controllable.  However, 

in this case the design is able to compensate for the uncontrollability.  As is shown in 

Figure 4.10, one of the closed-loop eigenvalues intersects the pole/zero cancellation at the 

critical velocity.  From a systems point of view this makes sense.  Recall that for a root-

locus the closed-loop poles always move from the open-loop poles to the open-loop zeros 

(or infinity) as the loop gain increases.  If there is a pole /zero cancellation, the closed-

loop pole must therefore be at that pole/zero location.  In this scenario, LQR designs the 

closed-loop poles to meet this requirement as is shown in Figure 4.10.  Because an 

attempt is not made to place the closed-loop poles in locations that are not feasible, the 
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control gains remain reasonable over the entire speed range.  Note that in the lower plot 

of Figure 4.10 the large closed-loop pole is not shown to concentrate on the poles and 

zeros of interest in the cancellation. 

 
Figure 4.10 Bicycle model and LQR closed-loop real poles and zeros 

As before, these control gains are demonstrated in a simulation with increasing speed 

(Figure 4.11).  The same yaw rate reference (10 deg/s) is used and the reference sideslip 

and steer angle are calculated using Equation (4.18), resulting in the controlled steer 

angle including a feed forward term given in Equation (4.19).  The only difference in this 

simulation is that the LQR control gains are now used.  Using the LQR gains the system 
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responds to the changing speed much better and the critical velocity does not cause the 

erratic behavior observed with the fixed closed-loop pole controller. 

 
Figure 4.11 Bicycle model response: LQR, varying speed 

Alternative methods to LQR may also avoid the controllability problem.  In particular 

classical transfer function control does not need to consider controllability; however, care 

would need to be taken.  As can be seen in Figures 4.1 and 4.2, as the vehicle speed 

increases the open-loop poles transition from real to complex and the relative magnitude 

of the poles and zeros shifts, i.e. the zero becomes larger than one of the poles.  The 

movement in the open-loop pole and zero locations makes classical transfer function 
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control design techniques more difficult.  Equivalent to transfer function control is output 

feedback as opposed to full state feedback.  Yaw rate may be considered as the only 

measurement (similar to a transfer function from steer angle to yaw rate).  However, 

because only one closed-loop pole is being placed the other is floating, i.e. choosing the 

control gain also chooses the second closed-loop pole.  At some speeds, this second pole 

may have a positive real part making the system unstable.  For these reasons, LQR is 

preferred over the complexities of classical control and output feedback. 

4.2 Lateral Control to Reference Circle 

The bicycle model controller alone is not enough to drive the vehicle.  Higher level 

states must be incorporated into the system to direct the vehicle to the goal position.  For 

typical potential field controllers, the direction of the gradient of the potential field, i.e. 

the velocity vector field, is used as a desired vehicle course, ref.  Note that the stream 

function can be used in place of the velocity potential to calculate the velocity vector 

field, i.e. Equation (2.9) instead of (2.6).  Using only the potential field gradient as the 

reference state has two main drawbacks.  First, the path the vehicle will follow is 

completely determined by its initial course, since the gradient is calculated at the 

vehicle’s current location.  At any point (other than the start or goal) a unique desired 

course exists.  Therefore, only one path will be taken to the goal.  At the start or goal, the 

desired course does not exist and thus a controller bypass must be employed.  The 

simplest workaround is to drive straight until a desired course exists.  Note that although 

the precise path cannot be chosen by the end user, all available paths do reach the goal.  

A second and more troubling problem comes from the dynamic response of the vehicle.  



www.manaraa.com

 

111 

If the velocity vector field is tracked exactly, then a streamline is followed.  However, 

this requires the ability to instantly follow the desired course.  Typical steered ground 

vehicles are not able to do this.  As the bicycle (or nonlinear) model implies, there is a lag 

between the steer angle input and the yaw rate response.  This lag means that the vehicle 

will not exactly track a streamline.  Instead, there is a course error, which causes the 

vehicle to drift from its initial streamline.  The desired course would then be recomputed 

at the new position as opposed to along the initial streamline, effectively meaning a new 

streamline is being followed.  Additionally, the change in desired course may be larger 

than the vehicle can achieve, i.e. the vehicle cannot turn tightly enough. 

For many scenarios, these issues will not cause trouble with the vehicle reaching the 

goal.  However, as is shown in Figure 4.12, these problems can combine to cause the 

vehicle to intersect an obstacle.  The ultimate cause of the collision is the vehicle not 

being able to turn fast enough to follow the velocity vector field at the obstacle edge.  The 

velocity vector field is parallel to the obstacle along the obstacle edge as is dictated by the 

boundary conditions.  The reason the abrupt change is needed is that the vehicle 

trajectory drifts from its initial streamline due to the lag in the vehicle response.  This 

streamline is initially followed because it matches the vehicle’s initial heading (pointing 

directly at the goal location).  While this scenario might seem like an unrealistic 

alignment of factors that leads to the collision, as the number of obstacles increases, the 

likelihood of a collision also increases. 
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Figure 4.12 Potential field gradient control 

The solution to pure gradient following is to also track a desired streamline, des.  In 

terms of the control model, this requires an additional state, lateral position error, yerr.  As 

shown in Figure 4.13, the lateral error is defined as perpendicular to the vehicle’s 

velocity.  For calculating the change in lateral error, the desired path is assumed to be a 

circle.  This path allows a reference yaw rate to be used along with the corresponding 

steer angle and sideslip as described in Section 4.1.  Under this assumption, the equation 

for the lateral error can be calculated by finding the intersection of the desired circle 

(centered at Ec, Nc and with radius R) and the line perpendicular to the vehicle velocity 

vector: 
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 (4.24) 

After much algebraic and trigonometric simplification the derivative of the lateral error 

becomes 

   tanerr err erry V y      (4.25) 

Note that unlike the lateral error equation, the lateral error derivative does not depend on 

the vehicle’s position or global course, only the lateral position and course errors.  This is 

important for having the system model vary with as few parameters as possible.  As with 

the bicycle model, vehicle speed is the only time varying parameter included in the 

model.  The lateral error derivative can also be linearized for small lateral position and 

course errors for use in the linear control model: 

 err erry V  (4.26)  
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Figure 4.13 Reference circle additional control states 

As with the bicycle model controller, the circle tracking controller must be 

formulated to drive a state to zero (as opposed to a reference state).  For this reason, an 

error state is defined as the difference in the reference and actual state: 
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The reference states also match those used in the bicycle model controller, Equation 

(4.18) with the addition of a reference course, ref.  However, when tracking a reference 

circle, the reference yaw rate is determined by the circle radius and vehicle speed: 
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As with traditional potential field controllers, the reference course comes from the 

direction of the velocity vector field of the potential field at the vehicle’s location: 

 1tan E
ref

N

V

V
   

  
 

 (4.29) 

Note that the east and north velocities in this equation are for the potential field, not the 

vehicle.  Unlike the other states in Equation (4.27), there is no reference lateral position; 

the state is an error state directly. 

The derivative of the error state is similar to the original state given (in linear form) in 

Equations (2.33) and (4.1).  Because the reference sideslip and yaw rate are computed as 

the steady state values for a reference steer angle, their derivatives are zero.  Note that 

this assumption is exact when tracking a reference circle at a constant speed, i.e. along a 

circle at a constant speed the yaw rate and thus steer angle and sideslip are constant.  The 

reference course, on the other hand, obviously varies when moving along the reference 

circle.  In particular,  

 
ref refr   (4.30) 

Recall that the reference sideslip derivative is zero, which is why this Equation (4.30) is 

different than the actual course derivative given previously in Equation (2.33).  Also, note 

that when the reference course is taken to be tangent to the reference circle, the change in 

reference course is the reference yaw rate.  In practice, the reference course comes from 

the gradient of the potential field at the vehicle’s location, not the intersection point on 

the reference circle.  However, when the vehicle is on the reference circle this distinction 

is meaningless as the potential field gradient is tangent to the circle. 
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Just as the states must be transformed to error states, the input must also be 

transformed: 

 
err ref     (4.31) 

As with the reference sideslip and yaw rate, the reference steer angle given in Equation  

(4.18) is the steer angle required to keep the vehicle on the reference circle.  The 

linearized equations of motion for tracking a reference circle then become 
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As with the bicycle model controller shown in Equation (4.19), full state feedback 

with feed forward is used to control the reference circle tracking system.  However, in 

this case the gain matrix is expanded to account for the additional states: 

 

ref

ref

ref r y

ref

err

r r

K K K K

y

 

 
 

 

 
 


       
 
 

 (4.33) 

The uncontrollable speed of the bicycle model presented in the previous section is also 

present in this system since it contains the bicycle model.  For this reason, the gains for 

the controller are designed with LQR principles, i.e. Equations (4.21) and (4.22).  The 

state and input weights were tuned by hand to yield acceptable system performance 

without demanding inputs that are not physically realizable, resulting in 
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The other information the controller needs, of course, is the error state to be fed back.  

The yaw rate, sideslip, and course can be measured directly from the vehicle.  Lateral 

error is calculated by numerically searching the stream function along the line 

perpendicular to the vehicle velocity vector until the desired streamline (stream function 

contour) is found.  This is the reason an explicit stream function is required with this 

control method.  If only the desired streamline were known as opposed to the entire 

stream function then this search becomes more difficult since it is harder to determine on 

which side of the streamline the search point lies.  Note that the stream function is only 

defined at distinct points on a solution grid.  The search points along the perpendicular 

line do not fall on these grid points in general.  Therefore, a 2D interpolation must be 

performed for each search point.  This can result in many interpolations for each steer 

angle calculation.  This interpolation is one of the computational bottlenecks when 

implementing this controller in real time.  The reference states and input are calculated 

from the potential field using Equations (4.18), (4.28), and (4.29). 

4.2.1 Reference Circle Calculation 

For the reference yaw rate a turn radius is required.  The circle that most closely 

matches a curve at a given point is known as the osculating circle.  The radius of the 

osculating circle of the stream function contour is defined as [Weisstein 2008] 
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The center of the circle lies along the line perpendicular to the curve: 
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where Eref and Nref are the coordinates of the intersection of the reference streamline and 

the line perpendicular to the vehicle velocity vector given by 
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Note that each of the partial derivatives in Equation (4.35) must be computed over the 

entire solution grid producing a radius and center for each point.  At each time step, the 

osculating circle parameters are interpolated at the point the desired stream and lateral 

error line segment intersect.  This interpolation is not as troubling as the lateral error 

search since it only occurs once per steer angle calculation.  Note that the radius could be 

calculated at the vehicle location in the same manner as the reference course.  As with the 

desired course, the points converge when the vehicle is on the desired streamline.  Also, 

note that the radius is not necessarily positive.  Equation (4.35) is actually the inverse of 

the curvature of the osculating circle.  The sign of the curvature determines the direction 
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of the center of the osculating circle, which in turn determines the sign of the reference 

yaw rate: 

   1sign sign tan c
ref
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N N
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Calculating the streamline radius involves many numerical approximations.  To 

verify the accuracy of the approximation, the vortex potential given in Equation (2.16), is 

used.  The streamlines of vortex flow are circles centered at the origin.  Therefore, the 

radius is known exactly.  The results of the true and calculated radius from the vortex 

potential are shown in Figure 4.14.  Over the majority of the solution grid, the difference 

in the true and calculated radius is very small.  The error grows in two locations: along 

the solution edge and near the origin.  At the solution edge, the error is due the numerical 

nature of the partial derivatives.  Ideally, the numerical first and second derivative 

approximations used in Equation (4.35) rely on points on both sides of the calculation 

grid point.  On the solution edge however, points only exist interior of the calculation 

point.  This reduces the accuracy of the numerical derivative.  However, the vehicle 

should not be following a streamline near the edge of the solution grid.  If the desired 

path nears the solution boundary, then the grid should be expanded to allow room around 

the desired path.  The effects of the edge inaccuracy do not extend beyond the grid points 

immediately on the edge of the solution grid.  This error is the reason the radius error is 

not shown on the solution edge. 

The remaining large radius error is centered near the origin.  This error is due to the 

grid spacing.  As the radius approaches the magnitude of the grid spacing, the numerical 

approximations begin to break down.  Notice that the largest errors (both positive and 
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negative) occur near the origin.  The errors in the missing region around the origin grow 

quite large, and so are not shown.  This error only manifests itself when the radius 

becomes small, e.g. at the singularity in the center of the vortex.  While these errors may 

be significant near streamline singularities such as the stagnation points on obstacles, 

over most of the potential field the errors in radius are small enough to be ignored.  The 

stagnation points should not present a problem because the desired streamline should not 

go that close to an obstacle regardless of this radius calculation. 

 
Figure 4.14 Radius calculation validation 
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4.2.2 Controller Response 

The vortex potential is also used to demonstrate the response of the complete 

streamline tracking controller.  For this simulation, the vehicle is initialized with 0.01 

stream function error, which relates to nearly 1 m of lateral error.  The vehicle is due 

north of the reference streamline facing east.  The speed is held constant at 10 m/s and the 

sample rate is 100 Hz.  For this test, the bicycle model is used in place of the nonlinear 

model to remove errors created by the vehicle model.  However, the global position is 

still computed using Equation (2.31), which is then used to calculate the reference states 

and lateral error.  The trajectory resulting from this simulation is shown in Figure 4.15.  

Note that after ten meters (one second) the vehicle is essentially on the reference 

streamline with zero tracking error. 

 
Figure 4.15 Trajectory of the circle controller validation, with a linear vehicle model 

The states and steer angle from the simulation are shown in Figure 4.16.  Because 

vortex flow matches the controller assumptions (i.e. tracking a reference circle) it is 
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possible to compare the actual response to that of the expected closed-loop system.  Note 

that the two lie on top of each other even though the actual system does not directly 

simulate the lateral error state as the closed-loop system does. 
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Figure 4.16 States of the circle controller validation, with a linear vehicle model 
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The previous simulation is repeated using the nonlinear vehicle model with the results 

shown in Figures 4.17 and 4.18.  Note that although the response does not match the 

closed-loop model, the settle time is approximately the same.  The difference in the 

responses (which is explored in more detail below) is due to the vehicle nonlinearities, in 

particular tire saturation.  However, the controller is still able to compensate for these 

unmodeled dynamics. 

 
Figure 4.17 Trajectory of the circle controller validation, with a nonlinear vehicle model 
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Figure 4.18 States of the circle controller validation, with a nonlinear vehicle model 
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To test the controller in a more realistic scenario, the map from the gradient 

controller, Figure 4.12, is used.  In particular, the map consists of a rectangular and two 

circular obstacles between a start location to the southeast and goal location to the 

northwest.  The stream function is calculated using the method developed in Section 

3.2.3.  The vehicle starts directly facing the goal.  The desired streamline is chosen to 

smoothly avoid all obstacles.  The simulation is run at a constant speed of 17.9 m/s (40 

mph).  As with the previous simulations, the sample rate is 100 Hz.  Finally for the 

simulation, the nonlinear vehicle model is used given in Equations (2.28), (2.29), (2.31), 

and (2.32) is used.  The trajectory of the vehicle is shown in Figure 4.19.  Overall, the 

trajectory looks reasonable.  The vehicle deviates from the desired streamline in two 

areas, near the start location and after passing the circular obstacle. 

 
Figure 4.19 Trajectory of the streamline controller response 
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The system response is shown in Figure 4.20.  This view of the controller is more 

troubling than the trajectory.  As expected, the reference state is not matched for two 

periods.  The first deviation is due to the initial vehicle state not matching the desired 

streamline.  Recall that this was one of the major down sides of the gradient tracking: the 

trajectory depends entirely on the initial condition.  However, with the streamline 

controller it is possible to choose the desired trajectory.  Also, note that during this period 

the steer angle saturates at 30 deg.  If the initial heading is not close to the tangent of the 

desired streamline problems may occur.  The second deviation is more troubling.  This 

deviation occurs after the vehicle passes the circular obstacle.  Some tracking error is 

expected due to the changing reference circle, i.e. the instantaneous streamline radius is 

not constant.  This changing reference can be seen in the reference yaw rate.  Because the 

speed is constant, the reference yaw rate is inversely proportional to the reference radius 

as seen in Equation (4.28).  In this case, however, the deviation from the reference states 

is extreme.  In particular, the vehicle sideslip reaches 30 deg and yaw rate peaks at  

65 deg/s.  The vehicle is out of control even if it does eventually return to the desired 

streamline.  Notice that even the reference yaw rate reaches 30 deg/s and this is when the 

vehicle behavior becomes erratic. 
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Figure 4.20 States of the streamline controller response 
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Ultimately, tracking the desired streamline in this scenario requires the vehicle to 

perform outside its capabilities.  The tire responses for the simulation are shown in Figure 

4.21.  Note that the tires become saturated during the simulation.  For normal driving and 

to not invalidate the controller assumptions, vehicle maneuvers should be restricted to 

ensure that the tire forces remain in the linear region of the tire.  An initial concept to 

correct this problem might be to raise the LQR weights on the states so that the states 

more closely match the reference and thus are in the linear region.  However because the 

reference state is outside the linear region, this would not correct the problem.  The 

solution must lie in modifying the reference states so that unreasonable behavior is not 

expected and the vehicle limitations are respected. 

 
Figure 4.21 Tire curves from the streamline controller response 

In summary, a vehicle controller that tracks a desired streamline given a potential 

field stream function has been developed.  This controller accounts for a critical speed at 

which the vehicle becomes uncontrollable by using LQR techniques to design the control 
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gains.  The controller is designed around a system based on tracking a constant reference 

circle.  Methods for calculating the reference circle and other reference states have been 

presented.  This controller, and more precisely the reference trajectory, has the problem 

of exceeding the physical limitations of the vehicle.  Chapter 5 describes several methods 

to modify the reference trajectory to accommodate the constraints imposed by the 

vehicle. 
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5 PATH MODIFICATION 

To account for the constraints imposed by the vehicle, three modifications are made 

to the controller presented in Chapter 4: the vehicle speed is adjusted, lateral acceleration 

is limited, and the reference streamline is shifted.  Specifically, Section 5.1 presents a 

method to approximate the distance to an obstacle using potential fields.  This potential 

field is then used to determine a reference speed for the vehicle.  Additionally, this 

section discusses a method to limit steer angle and speed when the vehicle exceeds a 

lateral acceleration limit.  Section 5.2 further improves the control algorithm by shifting 

the reference streamline away from obstacles if the vehicle becomes too close.  This 

serves two purposes: it allows the vehicle to travel faster since the reference speed is slow 

near an obstacle, and it increases safety since there is more space between the vehicle and 

obstacles. 

5.1 Reference Speed 

Typically, potential field controllers use the magnitude of the potential field gradient 

as the vehicle speed reference.  In terms of the fluid dynamics scheme for the potential 

field, this means the fluid speed is also the vehicle speed.  This poses problems for 

vehicle control.  When two obstacles are close together, e.g. Figure 3.4, the streamlines 

become compressed between the obstacles; this indicates an increased fluid speed.  In this 

scenario a vehicle should slow down.  Far from the obstacles, the streamlines are spaced 
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out indicating a slow fluid speed, but the vehicle can safely speed up in these regions.  

Based on these two examples, a solution may be to use the inverse of the gradient 

magnitude as the vehicle speed.  However, recall the stagnation points that exist on the 

obstacle edges.  At these points the fluid velocity is zero implying its inverse, the 

proposed vehicle speed, is infinite.  The obstacle edge is not the location for an infinite 

speed singularity.  Therefore, a new scheme is developed to determine the vehicle’s 

reference speed. 

Intuitively, a vehicle’s speed should decrease near an obstacle and increase with 

distance from obstacles.  Distance to a generic shape, however, is not always an easy 

number to calculate.  Alternatively, potential field techniques can be used to implement 

the same intuitive concept.  In particular, using Dirichlet boundary conditions the 

reference speed can be calculated as a potential field, V.  The potential is low (or zero) 

on an obstacle edge and a max allowable speed on the world boundary.  Presumably the 

world boundary is far enough away from any obstacles that a high speed is safe.  If this 

assumption is not true, the solution area should be increased in size. 

An example of the reference speed potential field is shown in Figure 5.1.  Notice that 

the reference speed is zero on the obstacle edges and increases with distance from the 

obstacles to a maximum of 17.9 m/s (40 mph) at the world boundary.  Note that this 

potential is not proportional to the distance to the obstacle.  Recall that Dirichlet 

boundary conditions correspond to sources or sinks in analytical flow.  From Figure 2.2 it 

is obvious that the velocity potential of a source does not vary linearly with distance from 

the source location.  The same is true with Dirichlet boundary conditions.  Even though 
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this potential is not proportional to distance to an obstacle, it serves the same purpose of 

creating a low reference speed near obstacles and a high speed far from obstacles. 

 
Figure 5.1 Reference speed potential using Dirichlet boundary conditions 

Incorporating the reference speed into the vehicle controller means that two potential 

fields must be calculated, the reference streamline and the reference speed.  However as 

is demonstrated in Table 3.1, calculating a potential field with Dirichlet boundary 

conditions does not add appreciably to the overall computation time.  Additionally, the 

vehicle’s response to the reference speed must be included in the simulation.  To this end, 

Equation (2.30) is used to calculate the actual vehicle speed given a reference speed 

input, Vref.  The reference speed input is interpolated from the reference speed potential, 

V, to the vehicle’s location. 



www.manaraa.com

 

134 

To test the reference speed addition to the controller, a vehicle is simulated in the 

same test map used previously, but with the reference speed potential shown in Figure 

5.1.  The trajectory resulting from this simulation is shown in Figure 5.2.  Notice that 

unlike the previous simulation (Figure 4.19), the vehicle is able to follow the desired 

streamline after passing the circular obstacle.  However, the initial error is still present.  

Because the vehicle is not initially near any obstacles, its reference speed is not 

drastically modified from the initial 17.9 m/s (40 mph) and the response is effectively the 

same.  In other words, modifying the reference speed is designed to mitigate errors near 

obstacles, not the transient errors due to initial conditions. 

 
Figure 5.2 Trajectory of the streamline controller response, adjusting speed 

The vehicle response to this simulation is shown in Figure 5.3.  Note that the vehicle 

speed significantly drops as the obstacles are passed.  Also, note that unlike the constant 
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speed simulation, the reference states are tracked (after the initial transients die out).  

Reducing the speed near obstacles serves two purposes.  First, it increases safety by 

slowing down near obstacles as a human driver would.  Second, it produces lower speeds 

in the areas most likely to require tighter maneuvering.  The most drastic changes in the 

direction of the potential field gradient occur near singular points or sharp obstacle 

corners.  Recall that the stream function boundary condition only produces singular 

(stagnation) points on the obstacles edges.  Therefore, the majority of sharp turns in the 

reference trajectory occur near obstacles.  The vehicle is better able to negotiate the sharp 

turns if it is moving slowly.  The world boundary corners also produce sharp turns 

because the boundary is treated like an obstacle.  However, as has been mentioned, the 

vehicle should not be following a streamline near the world boundary.  The increased 

maneuverability at low speeds is the reason the vehicle is able to track the desired 

streamline when the reference speed is modified (which it was not able to accomplish 

when driving at a high constant speed). 
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Figure 5.3 States of the streamline controller response, adjusting speed 
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Another interesting feature of this system response is the slight oscillation in the steer 

angle between 30 and 45 seconds.  This is due to the low vehicle speed during this time.  

Recall from Figure 4.1 that the natural frequency of the vehicle model increases as speed 

decreases.  Because of this, the controller is too aggressive at low speeds, i.e. the gains 

are too high.  The solution to the problem would be to lower the LQR weights on the 

states.  However, in order to concentrate specifically on the interaction of the path 

planner and controller, in this research a single set of LQR weights is used.  This results 

in the oscillation observed in the response. 

The last feature of this response is the transient dynamics.  During the transient phase 

of the response, the steering angle still saturates at 30 deg and the lateral acceleration is in 

excess of 1 g at times.  The maximum lateral acceleration possible for a Chevrolet 

Corvette (such as the vehicle simulated in this work) is 0.93 g, so the simulation results 

reinforce the nonlinear vehicle model (although the model parameters are slightly 

incorrect resulting in the higher lateral acceleration).  However, this much lateral 

acceleration is not safe vehicle behavior.  As the tire curve from the simulation in Figure 

5.4 shows, to create the 1 g of lateral acceleration the tires saturate, just as with the 

constant speed simulation.  Even though the trajectory is followed, the extreme vehicle 

response is not acceptable. 
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Figure 5.4 Tire curves from the streamline controller response, adjusting speed 

To keep the tire behavior in the acceptable range as well as to prevent the vehicle 

from rolling, a limit is imposed on the lateral acceleration.  To guarantee the vehicle does 

not exceed the lateral acceleration limit, both the steer angle and the reference speed are 

limited.  In particular, lateral acceleration can be approximated in steady state as 

 y ra Vr V DC     (5.1) 

where the DC gain comes from Equation (4.18).  If the lateral acceleration from Equation 

(5.1) exceeds a safe limit, the steer angle is reduced to maintain the lateral acceleration at 

the safe limit: 
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Additionally, when the lateral acceleration limit is exceeded, the reference speed is 

limited: 
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The combination of these two limitations together allows the vehicle to turn as much as 

possible without becoming unsafe.  Beyond the potential field path planner and 

controller, this limit or one similar to it should be included in any lateral vehicle 

controller to prevent extreme behavior. 

The simulated response including the lateral acceleration limit is shown in Figures 

5.5-5.7.  For this simulation, the lateral acceleration limit is set to 0.5 g.  For the most part 

the response is identical to the previous case without the lateral acceleration limit.  The 

only difference is in the initial transients.  The vehicle converges to the desired streamline 

in four seconds as opposed to three seconds when the lateral acceleration is not limited 

and the maximum lateral error increases from 2.5 m to 3 m.  Notice that during the 

transients the lateral acceleration is held at the limit as the algorithm is designed to do.  

Because the lateral acceleration is limited, the lateral tire forces do not saturate.  In 

general, the lateral acceleration limit can be adjusted based on the desired aggressiveness 

of the vehicle controller and the terrain conditions.  In particular, methods exist to 

estimate the peak lateral tire force as the vehicle drives [Daily 2007].  The lateral 

acceleration limit can then be adjusted in real time based on the peak force so that the tire 

forces do not saturate regardless of the terrain. 
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Figure 5.5 Trajectory of the streamline controller response, limiting lateral acceleration 

 
Figure 5.6 Tire curves from the streamline controller response, limiting lateral 

acceleration 



www.manaraa.com

 

141 

 
Figure 5.7 States of the streamline controller response, limiting lateral acceleration 
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5.2 Reference Streamline Shifting 

With the reference speed potential and the lateral acceleration limit, the vehicle 

controller safely navigates the map of obstacles while keeping the vehicle within 

acceptable behavior limits.  The last modification to the controller involves shifting the 

desired streamline away from obstacles as the vehicle is driving.  There are two main 

reasons for this modification.  The first is to increase the vehicle speed through the 

obstacle field.  Recall from the previous section that reference speed increases with 

distance from obstacles.  Therefore, when the reference streamline is shifted away from 

the obstacle the vehicle speed increases.  The second reason to shift the reference 

streamline is to keep the vehicle a safe distance from obstacles.  Although all streamlines 

reach the goal without intersecting any obstacles, they may pass quite close to an 

obstacle.  By shifting the desired streamline away from the obstacle, a factor of safety is 

added to the controller to prevent collisions with obstacles due to tracking error.  Ideally 

the initial reference streamline is chosen with this factor of safety.  However, 

occasionally a single streamline may not be able to avoid all obstacles with a safety 

buffer.  Additionally, if new obstacles are detected and the potential field is modified, 

then there is no guarantee on how close the reference streamline comes to obstacles.  

Ultimately, allowing the reference streamline to shift in real time reduces the dependence 

on the initial reference streamline choice. 

To accomplish the reference streamline shifting, the reference speed potential 

developed in Section 5.1 is used.  This potential varies with distance from the obstacles 

and its minimum is at the obstacle edges.  The gradient of the reference speed potential 

points away from the obstacles as shown in Figure 5.8.  The reference streamline is 
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shifted in the direction of this gradient and thus away from the obstacles.  The purpose of 

shifting the reference streamline is to keep a buffer between the vehicle and any 

obstacles.  Therefore, when the vehicle is already far from obstacles, the reference 

streamline is held constant.  The reference streamline only shifts when the vehicle is near 

an obstacle.  This aids controller performance since it is easier to track a constant 

reference rather than one that is continuously being updated.  This threshold is 

implemented by only shifting the reference streamline when the reference speed, which is 

correlated with distance to an obstacle, is below a limit.  The threshold in Figure 5.8 (and 

the remaining simulations) is 4.47 m/s (10 mph). 

 
Figure 5.8 Reference speed gradient 
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An example of the reference streamline shifting is shown in Figure 5.9.  The control 

point on the reference streamline (Eref, Nref) is calculated using Equation (4.37).  The 

direction of the reference speed gradient is calculated at the control point: 
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The distance the streamline is shifted is 
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where K is a tuning parameter to determine how much the reference streamline shifts 

each time step.  Note that as the magnitude of the gradient increases so does the amount 

the streamline shifts.  From this information, the point on the new reference streamline is 

calculated: 
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The new reference streamline, ref,new, is the contour of the stream function that passes 

through this point, i.e. the value of the stream function at this point. 
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Figure 5.9 Reference streamline shift near an obstacle 

Note that the streamline shifting bears some resemblance to Khatib’s or other 

Dirichlet type potentials, [Khatib 1985, Kholsa 1988, Sato 1993].  In particular, the 

reference streamline is moved directly away from obstacles.  However, the fact that the 

reference streamline is being repelled from the obstacle instead of the vehicle itself is an 

important distinction.  The vehicle control still comes from the stream function potential.  

In particular, the reference course is calculated at the vehicle’s position and therefore is 

not affected by the reference streamline shift.  The reference yaw rate, steer angle, and 

sideslip all come from the osculating circle at the control point on the reference 

streamline.  These values change when the reference streamline shifts, but if the shift is 

small then so are the corresponding changes in reference states.  The term that is most 

directly affected is the lateral error.  Near an obstacle, the streamlines are tangent to the 
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obstacle edge.  If the controller is working well, the vehicle course will also be tangent to 

the obstacle edge.  This means that the lateral error is nearly normal to the obstacle edge.  

Due to the nature of the Dirichlet boundary condition used in the reference speed 

potential, its gradient is also nearly normal to the obstacle edge.  Therefore, these two 

terms effectively add together to produce the new lateral error.  Because of the other 

reference states remaining nearly constant however, the vehicle continues to drive along 

the reference streamline while also being pulled away from the obstacle.  In pure 

Dirichlet potential field control, the control effort drives the vehicle directly away from 

the obstacle. 

The simulated response including the reference streamline shifting is shown in Figure 

5.10.  For this simulation the streamline shift gain, K, is 0.08 ms.  Recall that the 

reference speed decreases near obstacles.  Therefore, when the reference speed is over 

4.47 m/s (10 mph), i.e. the vehicle is away from obstacles, the reference streamline is 

constant.  Inside the speed threshold the reference streamline changes.  Around the 

rectangular obstacle, the shift is minor since the vehicle is far enough away from the 

obstacle that the gradient is small.  However, as the vehicle begins to approach the 

circular obstacle the streamline shift is much greater. 
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Figure 5.10 Trajectory of the streamline controller response, shifting the reference 

streamline 

The vehicle response for this simulation is shown in Figure 5.11.  This response is 

similar to the constant reference streamline response (Figure 5.7) with the obvious 

exception of when the reference speed is below 4.47 m/s (10 mph).  In this region, the 

reference streamline, i.e. the stream function value, shifts.  In particular, the value 

initially decreases then increases.  Recall from Section 3.2.3 that a stream function of 1 

corresponds to the world border clockwise from the start, e.g. northeast corner, whereas 

1 corresponds to counterclockwise from the start, e.g. southwest corner.  Therefore, the 

reference streamline initially moves to the right (from the vehicle’s perspective) then to 

the left.  This corresponds to the trajectory shown in Figure 5.10.  Another interesting 

feature of this response is that when the reference streamline is shifting there is tracking 



www.manaraa.com

 

148 

error.  This is not unexpected since changing references often result in tracking error 

(depending on system type, etc.).  For this controller however, the tracking error does not 

cause any problems.  The controller is innately knowledgeable of the fact that no 

obstacles are nearby due to the potential fields.  Therefore, the tracking error is 

acceptable.  Once the reference speed increases past the threshold, the reference 

streamline remains constant and the vehicle quickly converges to it. 
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Figure 5.11 States of the streamline controller response, shifting the reference streamline 
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Changing the streamline shift gain can alter the behavior of the controller.  For 

instance, the same test scenario with a shift gain of 1 ms is shown in Figure 5.12.  In this 

simulation, the shift gain is large enough to overcome the controller reference states and 

force the vehicle to go to the outside of the obstacles.  In particular, the shift gain is high 

enough to force the reference streamline to follow the reference speed shift threshold.  

The streamline shift gain effectively acts like an additional control gain.  This gain 

determines the importance of keeping a high reference speed vs. the other control states.  

For instance, with the high shift gain the vehicle took 45.18 seconds to reach the goal 

with an average speed of 6.82 m/s (15.3 mph) whereas the low shift gain required 50.25 

seconds with an average speed of 5.87 m/s (13.1 mph).  Notice that both are faster than 

when the reference streamline is constant; this simulation had a time of 54.06 seconds 

and an average speed of 5.34 m/s (12 mph).  If minimizing distance travelled is critical 

then a lower shift gain is better so that passing between obstacles is allowed.  On the 

other hand, if minimizing travel time is important, a higher shift gain may be better to 

keep the vehicle speed higher.  Note that a higher shift gain does not guarantee a shorter 

travel time.  In particular, the increased travel distance to go outside the obstacles may 

outweigh the increased speed resulting in a longer travel time. 
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Figure 5.12 Streamline controller response with a large streamline shift gain 

A dense obstacle grid simulation is shown in Figure 5.13.  In this scenario, twelve 

20×40 meter rectangles are spaced 20 meters apart.  These could represent buildings 

separated by roads, although as the trajectory shows the vehicle does not obey traffic 

laws.  This simulation demonstrates the controller’s ability to handle dense obstacle 

fields.  There are two interesting points about this simulation.  First, the boundary 

condition on the reference speed potential at the obstacle edges is set to 2.24 m/s (5 mph) 

as opposed to zero in the previous simulations.  This is so that the vehicle does not stop 

when passing between obstacles.  Recall that potential fields with a Dirichlet boundary 

condition become flat when a single boundary value dominates the potential field (as 

shown in Figure 3.27).  This is the case for the reference speed potential between the 

obstacles.  If the reference speed is zero at the obstacle edges, then between obstacles the 
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reference speed potential is effectively zero and the vehicle stops.  The other feature of 

this simulation is how close the vehicle comes to the obstacles.  The cause of this is also 

related to the flat reference speed potential.  The streamline shift gain is set to 0.08 ms as 

in Figure 5.10.  However, because the potential is essentially flat in this scenario, the 

magnitude of the gradient is small and the reference streamline is not appreciably shifted. 

 
Figure 5.13 Streamline controller response for a dense obstacle field 

In this chapter, the streamline controller has been modified, making it more effective 

and safer.  In particular, a lateral acceleration limit is imposed on the vehicle by limiting 

steer angle and longitudinal acceleration.  The reference speed sent to the vehicle is also 

modified to vary as the vehicle progresses through the course.  The reference speed 

increases with distance from the obstacles.  This allows the vehicle to maneuver tighter 

near obstacles and increases safety by slowing down in the proximity of obstacles.  
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Finally, a mechanism to shift the reference streamline that the vehicle is following away 

from obstacles has been developed.  This modification also increases safety by creating a 

buffer between the vehicle and obstacles.  It may also decrease the time to reach the goal 

by keeping the reference speed higher.  At this point, a successful path planner and 

controller have been developed.  Additionally, several test scenarios have been shown 

where the vehicle negotiates an obstacle field to reach a goal. 
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6 CONCLUSIONS 

This work has developed a harmonic potential field based path planner and controller 

for navigating a vehicle through an obstacle field to a goal location.  The potential fields 

provide a method to combine the path planning and control routines into a single 

algorithm.  The control effort to the vehicle comes directly from the potential field 

instead of through a reference path.  This allows the vehicle controller to be more aware 

of the vehicle’s surroundings and therefore make better decisions.  To this end, a new 

method of calculating a potential field was developed.  Based on this potential field, a 

controller was designed to drive the vehicle to the goal location.  This base controller was 

then modified to account for vehicle dynamic limitations and increase safety. 

6.1 Overall Results 

The potential field used in this research was derived from fluid dynamics concepts.  

In particular, it satisfies the Laplace partial differential equation.  Solutions of the 

Laplace equation (harmonic functions) are free of extrema thus the vehicle is guaranteed 

to reach the goal.  Varieties of design methods to generate a potential field that satisfies 

the Laplace equation and represents the physical world the vehicle is maneuvering in 

were presented.  These methods fall into two categories, analytical and numerical.  Each 

of the potential field design methods was judged based on three requirements of the 

vehicle controller: the ability to accurately represent generic shaped obstacles, the 
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presence of an explicit stream function for use in the vehicle controller, and the 

calculation time necessary to compute the potential field. 

Two new methods of generating the potential field were developed.  The first method 

is an analytic solution.  This method uses a weighted average of individual obstacle 

potential fields to combine circular obstacles and roughly approximate the shape of a 

physical obstacle.  This method satisfies the three judging criteria.  However, its behavior 

outside these criteria often becomes unacceptable.  In particular, the reference paths the 

vehicle follows are convoluted near obstacles and often needlessly approach obstacles 

before veering away.  The second method involves a numeric solution of the stream 

function (as opposed to the velocity potential most numeric solutions calculate).  This 

method exactly (to the resolution of the solution grid) represents any shape obstacles and 

satisfies the other judging criteria.  Because of the ability to exactly represent any shape 

obstacle and the smoother streamlines, the numeric stream function potential field was 

chosen as a more effective path planning method. 

Typical potential field controllers rely solely on the gradient of the potential field to 

direct the vehicle to the goal location.  This works well for robots that can 

instantaneously track the changing course defined by the gradient.  However, for steered 

vehicles the dynamic response and vehicle limitations, e.g. turning radius, make exact 

gradient tracking problematical.  To correct this problem, a vehicle controller that tracks 

a reference streamline in addition to the potential field gradient was designed.  This 

controller is implemented as a full state feedback controller designed around the bicycle 

vehicle model with two additional states of course and lateral error based on tracking a 

reference circle.  It was shown that the bicycle model becomes uncontrollable at a critical 
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speed.  The cause of the uncontrollability is a pole/zero cancellation in the system model.  

To counter the uncontrollability, LQR techniques are used to calculate the control gains.  

LQR inherently places one of the closed-loop poles at the pole/zero cancellation.  

Therefore, the control gains remain reasonable even at the critical speed. 

The vehicle controller was developed with a feed forward term so that there was no 

tracking error to the reference circle (assuming no model uncertainty or disturbances).  

The reference states used to calculate the feed forward steer angle and state error are 

calculated from the potential field.  In particular, the reference course is the direction of 

the gradient of the potential field, the reference yaw rate is calculated from the osculating 

circle of the reference streamline, and the reference sideslip and steer angle are the steady 

state values required to hold the reference yaw rate.  Although the numerical stream 

function potential field is used in this research, the controller will work with any potential 

field that contains an explicit stream function.  In simulation, this controller was shown to 

work for test scenarios that matched the model assumptions, i.e. the streamlines were 

circles, as well as on a test obstacle field.  While this controller drove the vehicle to the 

goal, it did so in a method that was not safe for the vehicle.  This extreme behavior 

motivated changes to the base controller. 

Therefore, three additions were made to the base vehicle controller to remove the 

vehicle’s severe response: the reference speed was modified, the lateral acceleration was 

limited, and the reference streamline was shifted.  The purpose of modifying the 

reference speed is to force the vehicle to slow down as it approached obstacles.  This 

obviously increases safety by reducing speed when the chance of a collision is increased, 

but it also increases the vehicle’s maneuverability near obstacles where tighter turns are 
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often required.  To implement the reference speed, a second potential field was created.  

This potential is low near obstacles and high at the world boundary.  Using this method, 

the solution grid must be chosen such that the world boundary is far enough away from 

the obstacles to make higher speed driving safe.  The reference speed sent to the vehicle 

speed model (derived from a simplified cruise controller) is the value of the reference 

speed potential at the vehicle’s location.  This modification to the controller reduces 

unwanted vehicle behavior near obstacles.  However, it does not affect the behavior far 

from obstacles (usually due to initial conditions).  To guarantee that the vehicle remained 

within its safety limits (i.e.to prevent roll over or sliding) a lateral acceleration limit was 

also imposed.  This limit is imposed by restricting the steer angle the controller can 

command.  Additionally, when the vehicle is at this limit the reference speed is not 

allowed to increase.  This effectively keeps the vehicle in the linear tire region and 

removes extreme handling behaviors. 

The last modification made to the controller was a method to shift the reference 

streamline when the vehicle is near an obstacle.  This shifting is based on the reference 

speed potential since that potential is correlated to the distance to an obstacle.  If the 

reference speed potential is below a threshold, i.e. the vehicle is near an obstacle, then the 

reference streamline is shifted in the direction of the gradient of the reference speed 

potential, i.e. away from the obstacle.  This modification both increases safety by creating 

a buffer between the vehicle and obstacles and decreases time to the goal location by 

keeping the reference speed high since the reference speed is reduced near obstacles.  

Throughout the dissertation, the various controllers were shown navigating a standard test 

course.  In addition, the complete controller was demonstrated on a test course densely 
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populated with obstacles.  Once the modifications were made to reduce the 

aggressiveness of the controller, it performed well in both tests. 

6.2 Future Work 

Although a successful path planner and controller are presented in this dissertation, 

there remain several areas where both the potential field and the controller can be 

researched further.  For the potential field, as with the work presented in this dissertation, 

areas of investigation are present in both the analytic and numeric solutions.  There are 

also areas that could be researched that apply to both methods.  Possible improvements to 

the controller exist for both the structure of the controller and for its implementation. 

6.2.1 Potential Field 

Several broad areas could be further researched with regard to the potential field.  The 

first is investigating other differential equations to generate the potential field.  In 

particular, other research has initially investigated biharmonic functions (fourth 

derivatives instead of second as with the Laplace equation) [Masoud 1994].  However, 

these techniques have not been studied in the more advanced controller presented in this 

research.  Biharmonic potential fields may produce smoother streamlines that are easier 

for a vehicle to follow.  Another area of major interest is moving obstacles.  These have 

been studied for analytic circular obstacles, but not for the broader case of general shaped 

obstacles, or numeric solutions.  It has been shown that simply updating the obstacle 

location every time step and assuming it is constant is not sufficient [Waydo 2003].  A 

technique that is becoming popular for obstacle avoidance is probabilistic obstacles.  

These techniques acknowledge that the obstacle and vehicle position are not known 
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exactly.  Incorporating these techniques into the potential field methods would be a major 

improvement.  Finally, a method to represent not only obstacles but also terrain types in 

the potential fields would be beneficial.  For example, a steep hill may be possible to 

navigate, but only slowly.  Incorporating a scale of drivability into the potential field 

would allow for more advanced navigation than simply binary (i.e. yes/no) obstacles. 

For the analytic potential fields, the improvements center on alternative methods to 

define obstacles since none of the methods studied in this work were entirely successful.  

In particular, this research concentrated mainly on combining circles to create generic 

shaped obstacles.  However, fluid dynamicists often use conformal mapping techniques 

to transform the flow around circles into flow around other shapes.  This is a common 

method used to analyze airfoils.  These same techniques may allow circles to be 

transformed into common obstacle shapes.  However, problems would still exist with 

obstacles corrupting the edge streamline of previously added obstacles.  Another 

possibility to form an analytic potential field is to place a series of doublets directly in the 

flow.  Recall that doublets are formed inside the circular obstacles.  For that reason, it 

should be possible to insert a series of doublets into the flow instead of a series of circles.  

When creating a doublet, two parameters must be defined: strength and direction.  If the 

doublet method is to be pursued, a technique must be developed to calculate these 

parameters to match a physical obstacle.  Another interesting method to represent an 

obstacle is using a distributed source to model flow around a polygon.  However, as 

described in Section 3.1.1, sources create unwanted wakes downstream of the obstacle.  

A possible fix for the wake may be to add an equivalent sink inside the polygon obstacle. 
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For the numeric techniques, the stream function calculation method appears to 

successfully navigate around obstacles.  Improvements to the method are either to relax 

the assumptions this work makes or to improve the solution technique.  The stream 

function potential makes two assumptions about the start and goal location: they are 

along the world boundary and there is only one of each.  Moving the start and goal away 

from the world boundary is theoretically not difficult.  A discontinuity is created along a 

line segment, preferably facing away from the other start or goal location.  Although not 

theoretically difficult, implementing this may be more complex.  Determining which side 

of the line segment a point is on is not difficult.  However, the value on the boundary is 

more problematical.  Either a single line of points must create the boundary condition in 

which case the boundary condition is different on opposite sides of the point (i.e. the 

point actually has two boundary conditions), or a region of points around the line 

segment must be used to set the boundary condition.  Additionally, the discontinuity 

would need to be accounted for when computing the gradient (i.e. the velocity vector 

field). 

Adding multiple starts or goals is also problematical.  It is not immediately obvious 

what the boundary condition should be, in particular, the location of the discontinuity.  

For an analytic source, the discontinuity location does not matter.  The same should hold 

true of the numeric approximation.  This implies that the world edge boundary condition 

switches signs when each of the discontinuities is crossed along the edge, which does not 

seem intuitive or trivial to account for. 

One major area that deserves study in all potential field methods is the grid generation 

technique.  With fluid dynamics PDE solvers, creating the solution grid is often a large 
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portion of the computation time.  Using a non-uniform grid both speeds computation time 

and increases accuracy.  The computation time is improved by reducing the grid size in 

areas that are open and do not need many grid points to define.  However, around 

obstacles, in particular, many grid points would be used both to precisely define the 

obstacle shape and to capture the larger changes in the potential field that occur around 

obstacles. 

The last major area that should be studied is adding obstacles to the potential field in 

real time.  In practical applications, the complete world map will not be known until the 

vehicle begins to navigate through the course and sensors detect the obstacles.  

Intuitively, numeric potential fields are well suited to handle additional obstacles.  The 

potential field before an obstacle is detected would serve as the initial guess for the 

updated field.  If the changes are minor, the solution should converge quickly.  However, 

for the convergence to occur in real time, better PDE solvers may need to be employed.  

This research used custom developed software to calculate the potential field.  PDE 

solvers are another aspect of computational fluid dynamics that have seen a large amount 

of improvement.  Applying more complicated (and faster) solvers to the potential fields 

used in path planning may extend their use into dynamic real world environments. 

6.2.2 Vehicle Controller 

There are several possible improvements that could be made to the controller 

presented in this dissertation.  The main improvement would be to replace the lateral state 

with a stream function error.  These two errors serve the same purpose: to determine the 

error relative to the reference streamline.  The difference is that lateral error is obviously 

a true distance and so its dynamics are simple kinematic relationships with the other 
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states.  The change in stream function as the vehicle moves is not as easy to predict.  In 

particular, the change depends on the gradient of the stream function.  Therefore, the state 

matrix would depend on the potential function gradient as well as the vehicle speed.  

However, the benefit of this approach is that the computationally expensive lateral error 

search would not be necessary.  The stream function error is simply the difference in the 

desired streamline and the stream function at the vehicle’s location.  This would also be a 

more elegant solution since it further reduces the similarity to tracking a reference path 

and fits directly into the potential field control framework. 

Another improvement would be developing a method to optimally determine the 

initial reference streamline.  This operation however, could be computationally 

expensive.  A cost function for the optimal streamline could be either distance travelled 

or time to goal.  In either case, computing the cost function for a candidate streamline 

would involve integrating a particle travelling along the streamline.  This would need to 

be done for every streamline under consideration.  This integration should include the 

reference speed potential as the particle’s speed.  For complete accuracy, it could also 

include the streamline shifting.  However, including these terms increases the 

computational burden on the algorithm.  Additionally the cost function will typically 

have local minima in addition to the global minimum.  For instance, the streamlines on 

either side of an obstacle will have faster travel times than those near the obstacle due to 

the slower reference speed near obstacles.  However, only one side of the obstacle can be 

the true minimum.  These local minima would make searching for the true optimum 

streamline difficult. 



www.manaraa.com

 

163 

The reference speed potential could also be improved.  The dense grid simulation 

demonstrated a problem with this potential becoming very flat in an area surrounded by 

obstacles.  Therefore, a potential field proportional to the true distance to the obstacle 

may make a better reference speed.  This potential would have a better defined maximum 

through the obstacles.  This implies a larger gradient, which would improve the 

streamline shifting algorithm.  The downside of using the actual distance to an obstacle is 

the cost of computing that distance.  One other improvement that could be developed for 

the reference speed is to make it directional.  Once the vehicle is past an obstacle, its 

speed can increase even if it is still close to the obstacle.  This improvement would most 

likely not occur in the reference speed potential creation algorithm since this potential is 

independent of the vehicle orientation (although direction to the goal may substitute, 

albeit less safely).  Instead, the conversion from reference speed potential to the reference 

speed for the vehicle could take into account the vehicle orientation, e.g. through a dot 

product. 

The controller may also need some modification to allow for a wider application.  In 

particular, sideslip is typically an expensive measurement to acquire.  Removing the need 

for this measurement would make the controller easier to implement.  The best way to 

remove the sideslip measurement is to use an estimator.  Typically, model based sideslip 

estimators have not been successful due to the requirement for an accurate vehicle model 

and the relatively small magnitude of the signal.  However, the controller in this research 

already assumes an accurate vehicle model exists.  Additionally, the state could be 

deweighted in the control gains so that errors in the measurement/estimate do not have a 

large impact on the response.  An alternative method would be to use output feedback 
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instead of state feedback.  However, in this case the location of one of the closed-loop 

poles could not be arbitrarily chosen.  For certain speeds this floating pole may be in the 

right half plane, causing the vehicle to become unstable.  Related to the difficult sideslip 

measurement, a study into the effects of sensor uncertainties would be beneficial.  In 

particular, how the measurement errors propagate through the potential field interpolation 

to the reference states is not obvious.  Techniques exist for minimizing the effects of 

sensor error.  However, these techniques assume the error is directly applied to an input 

or measurement, not propagated into the reference state and input. 

The last obvious improvement to this research would be to implement the controller 

on an actual vehicle.  However, this requires a working autonomous vehicle with known 

model parameters and the sensor suite necessary to measure the required information.  At 

the time of this writing, such a system was not available for use with this research. 
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